Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Le calcul fonctionnel dans l’espace de Besov critique
HTML articles powered by AMS MathViewer

by G. Bourdaud PDF
Proc. Amer. Math. Soc. 116 (1992), 983-986 Request permission

Abstract:

Si $F$ une fonction de la variable complexe qui opère, par composition à gauche, sur l’espace de Besov $B_p^{s,q}({\mathbb {R}^n})$ ou sur l’espace de Triebel-Lizorkin $F_p^{s,q}({\mathbb {R}^n})$, où $0 < s < 1,s = n/p,1 \leq q \leq + \infty (q > 1$, dans le cas de l’espace de Besov), alors $F$ est globalement lipschitzienne. Ce résultat achève la description du calcul fonctionnel dans $B_p^{s,q}({\mathbb {R}^n})$ et dans $F_p^{s,q}({\mathbb {R}^n})$, pour $0 < s < 1$. Let $F$ be a complex variable function which acts, via left composition, on the Besov space $B_p^{s,q}({\mathbb {R}^n})$ or the Triebel-Lizorkin space $F_p^{s,q}({\mathbb {R}^n})$, where $0 < s < 1,s = n/p,1 \leq q \leq + \infty (q > 1$, in the Besov case); then $F$ is globally lipschitz. This theorem—added to previous results on the noncritical case—provides a complete characterization of the functional calculus on $B_p^{s,q}({\mathbb {R}^n})$ and $F_p^{s,q}({\mathbb {R}^n})$, for $0 < s < 1$.
References
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E35, 47B38
  • Retrieve articles in all journals with MSC: 46E35, 47B38
Additional Information
  • © Copyright 1992 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 116 (1992), 983-986
  • MSC: Primary 46E35; Secondary 47B38
  • DOI: https://doi.org/10.1090/S0002-9939-1992-1092916-6
  • MathSciNet review: 1092916