Two questions on scalar-reflexive rings
HTML articles powered by AMS MathViewer
- by Nicole Snashall
- Proc. Amer. Math. Soc. 116 (1992), 921-927
- DOI: https://doi.org/10.1090/S0002-9939-1992-1100664-9
- PDF | Request permission
Abstract:
A module $M$ over a commutative ring $R$ with unity is reflexive if the only $R$-endomorphisms of $M$ leaving invariant every submodule of $M$ are the scalar multiplications by elements of $R$. A commutative ring $R$ is scalar-reflexive if every finitely generated $R$-module is reflexive. A local version of scalar-reflexivity is introduced, and it is shown that every locally scalar-reflexive ring is scalar-reflexive. An example is given of a scalar-reflexive domain that is not $h$-local. This answers a question posed by Hadwin and Kerr. Theorem 7 gives eight equivalent conditions on an $h$-local domain for it to be scalar-reflexive, thus classifying the scalar-reflexive $h$-local domains.References
- K. R. Fuller, W. K. Nicholson, and J. F. Watters, Reflexive bimodules, Canad. J. Math. 41 (1989), no. 4, 592–611. MR 1012618, DOI 10.4153/CJM-1989-026-x
- D. T. Gill, Almost maximal valuation rings, J. London Math. Soc. (2) 4 (1971), 140–146. MR 292822, DOI 10.1112/jlms/s2-4.1.140
- Don Hadwin and Jeanne Wald Kerr, Scalar-reflexive rings, Proc. Amer. Math. Soc. 103 (1988), no. 1, 1–8. MR 938634, DOI 10.1090/S0002-9939-1988-0938634-2
- Don Hadwin and Jeanne Wald Kerr, Scalar-reflexive rings. II, J. Algebra 125 (1989), no. 2, 311–319. MR 1018948, DOI 10.1016/0021-8693(89)90167-1
- Eben Matlis, Cotorsion modules, Mem. Amer. Math. Soc. 49 (1964), 66. MR 178025
- Eben Matlis, Decomposable modules, Trans. Amer. Math. Soc. 125 (1966), 147–179. MR 201465, DOI 10.1090/S0002-9947-1966-0201465-5
- Eben Matlis, Rings of type I, J. Algebra 23 (1972), 76–87. MR 306185, DOI 10.1016/0021-8693(72)90046-4
- Eben Matlis, Rings with property $D$, Trans. Amer. Math. Soc. 170 (1972), 437–446. MR 306186, DOI 10.1090/S0002-9947-1972-0306186-9
- Thomas S. Shores and Roger Wiegand, Rings whose finitely generated modules are direct sums of cyclics, J. Algebra 32 (1974), 152–172. MR 352080, DOI 10.1016/0021-8693(74)90178-1
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 921-927
- MSC: Primary 13C13; Secondary 13C05, 13G05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1100664-9
- MathSciNet review: 1100664