ON A PROBLEM OF NIRENBERG
CONCERNING EXPANDING MAPS IN HILBERT SPACE

JANUSZ SZCZEPAŃSKI

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let H be a Hilbert space and $f : H \to H$ a continuous map which is expanding (i.e., $\|f(x) - f(y)\| \geq \|x - y\|$ for all $x, y \in H$) and such that $f(H)$ has nonempty interior. Are these conditions sufficient to ensure that f is onto? This question was stated by Nirenberg in 1974. In this paper we give a partial negative answer to this problem; namely, we present an example of a map $F : H \to H$ which is not onto, continuous, $F(H)$ has nonempty interior, and for every $x, y \in H$ there is $n_0 \in \mathbb{N}$ (depending on x and y) such that for every $n \geq n_0$

$$\|F^n(x) - F^n(y)\| \geq c^{n-m}\|x - y\|$$

where F^n is the nth iterate of the map F, c is a constant greater than 2, and m is an integer depending on x and y. Our example satisfies $\|F(x)\| = c\|x\|$ for all $x \in H$.

We show that no map with the above properties exists in the finite-dimensional case.

1. INTRODUCTION

In 1974 Nirenberg [9] stated the following problem:

$$(P_1)$$ Let H be a Hilbert space and let $f : H \to H$ be a continuous map that is expanding and whose range contains an open set. Does f map H onto H?

This question could be generalized to the case (in this paper called (P_2)) when the spaces considered are Banach spaces X, Y.

There are several partial positive answers to (P_1) and (P_2) in the following cases:

(a) X is finite dimensional [1, 2],
(b) $f = I - C$ where C is compact or a contraction or more generally a k-set-contraction [6, 10],
(c) f strongly monotone, i.e., there exists $s > 0$ such that [3, 7]

$$\text{Re}(f(x) - f(y), x - y) \geq s\|x - y\|^2$$

for all $x, y \in X$.

In [4] Chang and Shujie proved the surjectivity of the map $f : X \to Y$ (X, Y Banach spaces) under the additional assumptions that Y is reflexive, f is
Fréchet-differentiable, and
\[
limit_{x \to x_0} \sup \|f'(x) - f'(x_0)\| < 1 \quad \text{for all } x_0 \in X.
\]

Seven years ago Morel and Steinlein [8] gave a beautiful counterexample to (P2) in the case when \(f\) acts in the Banach space \(L^1(N)\).

In this paper we suggest a negative answer to (P1); namely, we present an example of a map \(F : H \to H\) which is not onto, continuous, \(F(H)\) has nonempty interior, and for every \(x, y \in H\) there is \(n_0 \in \mathbb{N}\) (depending on \(x\) and \(y\)) such that for every \(n \geq n_0\)
\[
\|F^n(x) - F^n(y)\| \geq c^{n-m}\|x - y\|,
\]
where \(F^n\) is the \(n\)th iterate of \(F\), \(c\) is a constant greater than 2, and \(m\) is an integer depending on \(x\) and \(y\). This condition means that the distance between any two trajectories of the discrete dynamical system \(F : H \to H\) tends to infinity in an exponential way.

2. The example

We start by constructing a map \(f : L^2(N) \to L^2(N)\) with the following properties:

(a) \(f\) is continuous,
(b) \(B(0, 1) \subset f(L^2(N))\) where \(B(0, 1)\) is the unit ball in \(L^2(N)\),
(c) \(f(L^2(N)) \neq L^2(N)\),
(d) \(f\) is an injection.

Then we define a map \(F\) by \(F(x) := cf(x)\). Taking into account the properties of \(f\) we show that \(F\) satisfies the required assumptions.

To define \(f\) we first introduce a continuous function \(\psi : R^+ \to R^+\) such that
\[
\psi(t) := \begin{cases}
1 & \text{for all } t \text{ so that } t \leq 1 \text{ and } 2 \leq t, \\
\alpha t & \text{for } 1 < t < 2, \\
1 & \text{for } t > 2,
\end{cases}
\]
where \(\alpha\) is a fixed number which satisfies \(0 < \alpha < 1\).

Now for every \(x \in L^2(N)\) let \(n_x\) denote the minimal natural number such that
\[
\left(\sum_{i=1}^{n_x} x_i^2\right)^{1/2} \leq \psi(\|x\|) \leq \left(\sum_{i=1}^{n_x+1} x_i^2\right)^{1/2}.
\]
(We allow \(n_x = 0\) and then the left side of the above inequality is 0.) We set
\[
f(x) := \begin{cases}
x & \text{for all } x \text{ such that } \|x\| \leq 1 \text{ or } 2 \leq \|x\|, \\
(x_1, x_2, \ldots, x_{n_x}, \alpha_x x_{n_x+1}, \sqrt{1 - \alpha_x^2 x_{n_x+1}^2}, x_{n_x+2}, x_{n_x+3}, \ldots) & \text{for } 1 < \|x\| < 2,
\end{cases}
\]
where \(\alpha_x\) satisfies
\[
\left(\sum_{i=1}^{n_x} x_i^2 + \alpha_x^2 x_{n_x+1}^2\right)^{1/2} = \psi(\|x\|).
\]
(Of course 0 \(\leq \alpha_x < 1\); if \(x_{n_x+1} = 0\) then \(\alpha_x := 0\).)
The continuity of \(f \) and properties (b) and (c) are easy to prove. So we must only prove (d).

Before passing to the proof we make the obvious observation that

\[
\|f(x)\| = \|x\| \quad \text{for every } x \in L^2(\mathbb{N}).
\]

Taking into account this observation we show (d).

Lemma. Let \(x, y \in L^2(\mathbb{N}) \) and \(f(x) = f(y) \). Then \(x = y \).

Proof. By definition of \(f \) and (2) it is sufficient to consider the case when \(1 < \|x\| < 2 \) and \(1 < \|y\| < 2 \). By (2) we see immediately that \(\psi(\|x\|) = \psi(\|y\|) \), and from (1) and the fact that \(f(x) = f(y) \) it follows that \(n_x = n_y \) and, consequently, \(x_i = y_i \) for both \(i = 1, 2, \ldots, n_x \) and \(i = n_x + 2, n_x + 3, \ldots \).

Since \(\|x\| = \|y\| \) we conclude that \(|x_{n+1}^x| = |y_{n+1}^y| \) and since

\[
\alpha_x x_{n+1}^x = \alpha_y y_{n+1}^y, \quad \sqrt{1 - \alpha_x^2 x_{n+1}^x} = \sqrt{1 - \alpha_y^2 y_{n+1}^y}
\]

where \(\alpha_x \geq 0 \), we see that \(x_{n+1}^x = y_{n+1}^y \), which finishes the proof.

Now we define \(F(x) := cf(x), \ c > 2 \). We show the following

Theorem. The map \(F \) has the following properties:

- \(F \) is continuous,
- \(F(L^2(\mathbb{N})) \) has nonempty interior,
- \(F \) is not onto,
- for arbitrary \(x, y \in H \) there is \(n_0 \in \mathbb{N} \) (depending on \(x \) and \(y \)) such that for every \(n \geq n_0 \)

\[
\|F^n(x) - F^n(y)\| \geq c^n - m\|x - y\|
\]

where \(F^n \) is the \(n \)th iterate of \(F \), \(c \) is a constant greater than 2, and \(m \) is an integer depending on \(x \) and \(y \).

Proof. Properties (a_1), (b_1), (c_1) are easy to prove. We show (d_1).

By definition of \(f \) and (2), for every \(x \in L^2(\mathbb{N}) \)

\[
\|F^n(x)\| = c^n\|x\|,
\]

and there is some integer \(p \) depending on \(x \) (we choose the smallest one) such that

\[
F^n(x) = c^{n-p} F^p(x) \quad \text{for } n \geq p.
\]

Now consider the expression \(\|F^n(x) - F^n(y)\| \). By (5),

\[
\|F^n(x) - F^n(y)\| = \|c^{n-p} F^p(x) - c^{n-k} F^k(y)\| = c^{n-p} \|F^p(x) - c^{p-k} F^k(y)\|
\]

\((k \text{ corresponds to } y \text{ according to (5)}) \), and since

\[
c^{p-k} F^k(y) = F^p(y)
\]

(without loss of generality we can assume that \(p \geq k \)) we have

\[
\|F^p(x) - c^{p-k} F^k(y)\| = \|F^p(x) - F^p(y)\| > 0 \quad \text{for } x \neq y.
\]
because \(f \), and hence \(F \), is an injection. Finally, since \(c > 2 \) there is \(n_0 \) such that for every \(n \geq n_0 \)

\[
\|F^n(x) - F^n(y)\| \geq c^{n-p}\|x - y\|
\]

and \(m := \max\{k, p\} = p \). Thus, the proof of (d1) is finished.

Proposition. There is no map \(F_1 \) with properties (a1), (b1), (c1), (d1), and (e1) \(\|F_1(x)\| = c\|x\| \) in the finite-dimensional case.

Proof. Assume that \(F_1: \mathbb{R}^n \to \mathbb{R}^n \) is such a map. Then, by (c1) and (e1) there is \(0 \neq x_0 \notin F_1(\mathbb{R}^n) \). From (e1) it follows that \(F_1 \) maps spheres (centered at 0) into spheres, in particular it maps the sphere \(\mathcal{S} \) with radius \(\|x_0\|/c \) into the sphere with radius \(\|x_0\|/c \). By (a1) and (d1) \(F_1|_{\mathcal{S}} \) is continuous injection and because each sphere in a finite-dimensional space is compact, \(F_1|_{\mathcal{S}} \) is a homeomorphism onto a compact proper subset of the other sphere. But this contradicts the well-known theorem stating that the necessary condition for a compact set in \(\mathbb{R}^n \) to be homeomorphic to a sphere in \(\mathbb{R}^n \) is that its complement has exactly two connected components [5].

Acknowledgment

The author would like to thank the referee for his suggestion of including the above Proposition, which shows that the infinite-dimensionality of our example is essential.

References