The Cesàro operator is bounded on $H^ p$ for $0<p<1$
HTML articles powered by AMS MathViewer
- by Jie Miao
- Proc. Amer. Math. Soc. 116 (1992), 1077-1079
- DOI: https://doi.org/10.1090/S0002-9939-1992-1104399-8
- PDF | Request permission
Abstract:
In this note the boundedness of the Cesàro operator on ${H^p},0 < p < 1$, is proved.References
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403–439. MR 1545260, DOI 10.1007/BF01180596
- Aristomenis G. Siskakis, Composition semigroups and the Cesàro operator on $H^p$, J. London Math. Soc. (2) 36 (1987), no. 1, 153–164. MR 897683, DOI 10.1112/jlms/s2-36.1.153
- Aristomenis G. Siskakis, The Cesàro operator is bounded on $H^1$, Proc. Amer. Math. Soc. 110 (1990), no. 2, 461–462. MR 1021904, DOI 10.1090/S0002-9939-1990-1021904-9
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 1077-1079
- MSC: Primary 47B38; Secondary 30D55
- DOI: https://doi.org/10.1090/S0002-9939-1992-1104399-8
- MathSciNet review: 1104399