Rigidity theorems for nonpositive Einstein metrics
HTML articles powered by AMS MathViewer
- by Zhong Min Shen
- Proc. Amer. Math. Soc. 116 (1992), 1107-1114
- DOI: https://doi.org/10.1090/S0002-9939-1992-1123666-5
- PDF | Request permission
Abstract:
In this paper we study the following problem: When must a complete Einstein metric $g$ on an $n$-manifold with $\operatorname {Ric} = (n - 1)\lambda {\text {g,}}\lambda \leq 0$, be a metric of constant curvature $\lambda ?$References
- Michael T. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989), no. 3, 455–490. MR 999661, DOI 10.1090/S0894-0347-1989-0999661-1
- Michael T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math. 102 (1990), no. 2, 429–445. MR 1074481, DOI 10.1007/BF01233434
- M. Berger, Sur les variétés d’Einstein compactes, Comptes Rendus de la IIIe Réunion du Groupement des Mathématiciens d’Expression Latine (Namur, 1965) Librairie Universitaire, Louvain, 1966, pp. 35–55 (French). MR 0238226
- Shigetoshi Bando, Bubbling out of Einstein manifolds, Tohoku Math. J. (2) 42 (1990), no. 2, 205–216. MR 1053949, DOI 10.2748/tmj/1178227654
- Pierre H. Bérard, From vanishing theorems to estimating theorems: the Bochner technique revisited, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 371–406. MR 956595, DOI 10.1090/S0273-0979-1988-15679-0
- Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0458335
- Jeff Cheeger and Detlef Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119–128. MR 303460
- Kenji Fukaya and Takao Yamaguchi, Almost nonpositively curved manifolds, J. Differential Geom. 33 (1991), no. 1, 67–90. MR 1085135
- M. Gromov, Almost flat manifolds, J. Differential Geometry 13 (1978), no. 2, 231–241. MR 540942
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- H. P. McKean, An upper bound to the spectrum of $\Delta$ on a manifold of negative curvature, J. Differential Geometry 4 (1970), 359–366. MR 266100
- Zhong Min Shen, Some rigidity phenomena for Einstein metrics, Proc. Amer. Math. Soc. 108 (1990), no. 4, 981–987. MR 1007511, DOI 10.1090/S0002-9939-1990-1007511-2
- Rugang Ye, Ricci flow, Einstein metrics and space forms, Trans. Amer. Math. Soc. 338 (1993), no. 2, 871–896. MR 1108615, DOI 10.1090/S0002-9947-1993-1108615-3
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 1107-1114
- MSC: Primary 53C25; Secondary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-1992-1123666-5
- MathSciNet review: 1123666