Modules and rings satisfying (accr)
HTML articles powered by AMS MathViewer
- by Chin-Pi Lu
- Proc. Amer. Math. Soc. 117 (1993), 5-10
- DOI: https://doi.org/10.1090/S0002-9939-1993-1104398-7
- PDF | Request permission
Abstract:
A module $M$ over a ring $R$ is said to satisfy (accr) if the ascending chain of residuals of the form $N: B \subseteq N:{B^2} \subseteq N:{B^3} \subseteq \cdots$ terminates for every submodule $N$ and every finitely generated ideal $B$ of $R$. A ring satisfies (accr) if it does as a module over itself. This class of rings and modules satisfies various properties of Noetherian rings and modules. For each of the following rings, we investigate a necessary and sufficient condition for the ring to satisfy (accr): polynomial rings, power series rings, valuation rings, and Prüfer domains. We also prove that if $R$ is a ring satisfying (accr), then every finitely generated $R$-module satisfies (accr).References
- D. D. Anderson, J. Matijevic, and W. Nichols, The Krull intersection theorem. II, Pacific J. Math. 66 (1976), no. 1, 15–22. MR 435062
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- John A. Beachy and William D. Weakley, Piecewise Noetherian rings, Comm. Algebra 12 (1984), no. 21-22, 2679–2706. MR 757787, DOI 10.1080/00927878408823127
- N. Bourbaki, Éléments de mathématique. Fascicule XXVIII. Algèbre commutative. Chapitre 3: Graduations, filtrations et topologies. Chapitre 4: Idéaux premiers associés et décomposition primaire, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1293, Hermann, Paris, 1961 (French). MR 0171800 —, Algèbre commutative, Chapters 3 and 4, Hermann, Paris, 1961.
- Robert Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972. MR 0427289
- Robert Gilmer and William Heinzer, The Laskerian property, power series rings and Noetherian spectra, Proc. Amer. Math. Soc. 79 (1980), no. 1, 13–16. MR 560575, DOI 10.1090/S0002-9939-1980-0560575-6
- William Heinzer and David Lantz, $N$-rings and ACC on colon ideals, J. Pure Appl. Algebra 32 (1984), no. 2, 115–127. MR 741961, DOI 10.1016/0022-4049(84)90047-1
- William Heinzer and Jack Ohm, On the Noetherian-like rings of E. G. Evans, Proc. Amer. Math. Soc. 34 (1972), 73–74. MR 294316, DOI 10.1090/S0002-9939-1972-0294316-2
- Max. D. Larsen and Paul J. McCarthy, Multiplicative theory of ideals, Pure and Applied Mathematics, Vol. 43, Academic Press, New York-London, 1971. MR 0414528
- Chin-Pi Lu, Modules satisfying ACC on a certain type of colons, Pacific J. Math. 131 (1988), no. 2, 303–318. MR 922221
- D. G. Northcott, Lessons on rings, modules and multiplicities, Cambridge University Press, London, 1968. MR 0231816 N. Radu, Descompunerea primarǎ in inele comutative, Lectii de Algebrǎ III, Universitatea din Bucuresti, 1981.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 5-10
- MSC: Primary 13E05; Secondary 13C05, 13F05, 13J10
- DOI: https://doi.org/10.1090/S0002-9939-1993-1104398-7
- MathSciNet review: 1104398