Topological types of quasi-ordinary singularities
HTML articles powered by AMS MathViewer
- by Kyungho Oh
- Proc. Amer. Math. Soc. 117 (1993), 53-59
- DOI: https://doi.org/10.1090/S0002-9939-1993-1106181-5
- PDF | Request permission
Abstract:
A germ $(X,x)$ of a complex analytic hypersurface in ${\mathbb {C}^{d + 1}}$ is quasi-ordinary if it can be represented as the image of an open neighborhood of $0$ in ${\mathbb {C}^d}$ under the map $({s_1}, \ldots ,{s_d}) \mapsto (s_1^n, \ldots ,s_d^n,\zeta ({s_1}, \ldots ,{s_d})),\;n > 0$, where $\zeta$ is a convergent power series. It is shown that the topological type of the singularity $(X,x) \subset ({\mathbb {C}^{d + 1}},0)$ is determined by a certain set of fractional monomials, called the characteristic monomials, appearing in the fractional power series $\zeta (t_1^{1/n}, \ldots ,t_d^{1/n})$.References
- Shreeram Abhyankar, On the ramification of algebraic functions, Amer. J. Math. 77 (1955), 575–592. MR 71851, DOI 10.2307/2372643
- Dan Burghelea and Andrei Verona, Local homological properties of analytic sets, Manuscripta Math. 7 (1972), 55–66. MR 310285, DOI 10.1007/BF01303536
- Yih-Nan Gau, Embedded topological classification of quasi-ordinary singularities, Mem. Amer. Math. Soc. 74 (1988), no. 388, 109–129. With an appendix by Joseph Lipman. MR 954948
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362 H. W. E. Jung, Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderliehen $x,\;y$ in der Umbegung einer Stelle $x = a,\;y = b$, J. Reine Angew. Math. 133 (1908), 289-314.
- Joseph Lipman, Topological invariants of quasi-ordinary singularities, Mem. Amer. Math. Soc. 74 (1988), no. 388, 1–107. MR 954947, DOI 10.1090/memo/0388 —, Quasi-ordinary singularities of surfaces in ${\mathbb {C}^3}$, Proc. Sympos. Pure Math., vol. 40, part 2, Amer. Math. Soc., Providence, RI, 1983, pp. 161-171. —, Quasi-ordinary singularities of embedded surfaces, Thesis, Harvard Univ., 1965.
- Oscar Zariski, Studies in equisingularity. II. Equisingularity in codimension $1$ (and characteristic zero), Amer. J. Math. 87 (1965), 972–1006. MR 191898, DOI 10.2307/2373257
- Oscar Zariski, Exceptional singularities of an algebroid surface and their reduction, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 43 (1967), 135–146 (English, with Italian summary). MR 229648
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 53-59
- MSC: Primary 32S50; Secondary 32S05, 32S25
- DOI: https://doi.org/10.1090/S0002-9939-1993-1106181-5
- MathSciNet review: 1106181