Topological completions of metrizable spaces
HTML articles powered by AMS MathViewer
- by Ben Fitzpatrick, Gary F. Gruenhage and James W. Ott
- Proc. Amer. Math. Soc. 117 (1993), 259-267
- DOI: https://doi.org/10.1090/S0002-9939-1993-1110542-8
- PDF | Request permission
Abstract:
For a pair of metrizable spaces $X$ and $Y$, we investigate conditions under which there is a dense embedding $h:X \to Z$, where $Z$ is completely metrizable and $Z\backslash h(X)$ is homeomorphic to $Y$. In such a case, $Z$ is called a topological completion of $X$ and $Y$ is called a completion remainder of $X$. In case $X$ and $Y$ are completely metrizable, we give necessary and sufficient conditions that $Y$ be a completion remainder of $X$. We characterize the completion remainders of ${\mathbf {R}}$ and those of the rationals, ${\mathbf {Q}}$. We also characterize the remainders of ${\mathbf {Q}}(\kappa )$, a nonseparable analogue of ${\mathbf {Q}}$.References
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321 S. V. Medvedev, Topological characteristics of spaces ${\mathbf {Q}}(\kappa )$ and ${\mathbf {Q}} \times B(\kappa )$, Moscow Univ. Math. Bull. 41 (1986), 42-45. R. L. Moore, A set of axioms for plane analysis situs, Fund. Math. 25 (1935), 13-28. V. Niemytzki and A. Tychonoff, Beweis des Satzes dass ein metrisierbarer Raum dann und nur dann kompact ist, wenn er in jeder Metrik volständig ist, Fund. Math. 12 (1928), 118-120.
- A. Wilansky and M. D. Mavinkurve, Problems and Solutions: Solutions of Advanced Problems: 5602, Amer. Math. Monthly 76 (1969), no. 5, 569. MR 1535451
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 259-267
- MSC: Primary 54E20; Secondary 54A25, 54D40, 54D45
- DOI: https://doi.org/10.1090/S0002-9939-1993-1110542-8
- MathSciNet review: 1110542