Regular sets of sampling and interpolation for weighted Bergman spaces
HTML articles powered by AMS MathViewer
- by Kristian Seip
- Proc. Amer. Math. Soc. 117 (1993), 213-220
- DOI: https://doi.org/10.1090/S0002-9939-1993-1111222-5
- PDF | Request permission
Abstract:
Let ${z_{mn}} = {a^m}(bn + i),\;a > 1,\;b > 0,\;m,\;n$ integers. For each weighted Bergman space on the upper half-plane there exists a constant $c > 0$ such that $\{ {z_{mn}}\}$ is a set of sampling if and only if $b \ln a < c$ and a set of interpolation if and only if $b \ln a > c$. When $b \ln a = c$, $\{ {z_{mn}}\}$ is a set of uniqueness.References
- Arne Beurling, The collected works of Arne Beurling. Vol. 1, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1989. Complex analysis; Edited by L. Carleson, P. Malliavin, J. Neuberger and J. Wermer. MR 1057613
- R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^{p}$, Representation theorems for Hardy spaces, Astérisque, vol. 77, Soc. Math. France, Paris, 1980, pp. 11–66. MR 604369
- Ingrid Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), no. 5, 961–1005. MR 1066587, DOI 10.1109/18.57199
- Ingrid Daubechies and A. Grossmann, Frames in the Bargmann space of entire functions, Comm. Pure Appl. Math. 41 (1988), no. 2, 151–164. MR 924682, DOI 10.1002/cpa.3160410203
- A. Grossmann, J. Morlet, and T. Paul, Transforms associated to square integrable group representations. II. Examples, Ann. Inst. H. Poincaré Phys. Théor. 45 (1986), no. 3, 293–309 (English, with French summary). MR 868528
- Boris Korenblum, An extension of the Nevanlinna theory, Acta Math. 135 (1975), no. 3-4, 187–219. MR 425124, DOI 10.1007/BF02392019
- H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967), 37–52. MR 222554, DOI 10.1007/BF02395039
- T. Paul and K. Seip, Wavelets and quantum mechanics, Wavelets and their applications, Jones and Bartlett, Boston, MA, 1992, pp. 303–321. MR 1187347
- Richard Rochberg, Interpolation by functions in Bergman spaces, Michigan Math. J. 29 (1982), no. 2, 229–236. MR 654483
- Kristian Seip, Reproducing formulas and double orthogonality in Bargmann and Bergman spaces, SIAM J. Math. Anal. 22 (1991), no. 3, 856–876. MR 1091688, DOI 10.1137/0522054 K. Seip and R. Wallstén, Sampling and interpolation in the Bargmann-Fock space, Report Institut Mittag-Leffler 1990/91.
- Ke He Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker, Inc., New York, 1990. MR 1074007
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 213-220
- MSC: Primary 30D50; Secondary 30E10, 46E20
- DOI: https://doi.org/10.1090/S0002-9939-1993-1111222-5
- MathSciNet review: 1111222