Toward a precise smoothness hypothesis in Sard’s theorem
HTML articles powered by AMS MathViewer
- by S. M. Bates
- Proc. Amer. Math. Soc. 117 (1993), 279-283
- DOI: https://doi.org/10.1090/S0002-9939-1993-1112486-4
- PDF | Request permission
Abstract:
The familiar ${{\mathbf {C}}^k}$ smoothness hypothesis in the Morse-Sard Theorem can be weakened to ${{\mathbf {C}}^{k - 1,1}}$.References
- S. M. Bates, On the image size of singular maps. I, Proc. Amer. Math. Soc. 114 (1992), no. 3, 699–705. MR 1074748, DOI 10.1090/S0002-9939-1992-1074748-8 —, On the image size of singular maps. II, preprint.
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Shaul Grinberg, On invariant linear functionals, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), no. 3, 299–304. MR 814882, DOI 10.1016/1385-7258(85)90041-1
- R. Kaufman, A singular map of a cube onto a square, J. Differential Geometry 14 (1979), no. 4, 593–594 (1981). MR 600614, DOI 10.4310/jdg/1214435238 —, private communication, August 1990.
- Alec Norton, A critical set with nonnull image has large Hausdorff dimension, Trans. Amer. Math. Soc. 296 (1986), no. 1, 367–376. MR 837817, DOI 10.1090/S0002-9947-1986-0837817-2 —The fractal geometry of critical sets with nonnull image and the differentiability of functions, Ph.D. Thesis, Univ. of California, Berkeley, 1987.
- Arthur Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883–890. MR 7523, DOI 10.1090/S0002-9904-1942-07811-6
- Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0193578
- Hassler Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), no. 4, 514–517. MR 1545896, DOI 10.1215/S0012-7094-35-00138-7
- Y. Yomdin, The geometry of critical and near-critical values of differentiable mappings, Math. Ann. 264 (1983), no. 4, 495–515. MR 716263, DOI 10.1007/BF01456957
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 279-283
- MSC: Primary 58C25; Secondary 57R70, 58C27
- DOI: https://doi.org/10.1090/S0002-9939-1993-1112486-4
- MathSciNet review: 1112486