Mapping spaces of compact Lie groups and $p$-adic completion
HTML articles powered by AMS MathViewer
- by David Blanc and Dietrich Notbohm
- Proc. Amer. Math. Soc. 117 (1993), 251-258
- DOI: https://doi.org/10.1090/S0002-9939-1993-1112487-6
- PDF | Request permission
Abstract:
If ${\mathbf {BG}},\;{\mathbf {BH}}$ are the classifying spaces of compact Lie groups, with ${\mathbf {H}}$ connected, then the mapping space functor ${\mathbf {map}}({\mathbf {BG}}, - )$ commutes with $p$-completion on ${\mathbf {BH}}$: i.e., for each $f:{\mathbf {BG}} \to {\mathbf {BH}}$ the component $({\mathbf {map}}{({\mathbf {BG}},{\mathbf {BH}})_f})_p^ \wedge$ is $p$-complete, and is homotopy equivalent to ${\mathbf {map}}{({\mathbf {BG}},{\mathbf {BH}}_p^ \wedge )_{i \circ f}}$.References
- Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207 (French). MR 51508, DOI 10.2307/1969728
- A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133–150. MR 380779, DOI 10.1016/0040-9383(75)90023-3
- A. K. Bousfield, Homotopy spectral sequences and obstructions, Israel J. Math. 66 (1989), no. 1-3, 54–104. MR 1017155, DOI 10.1007/BF02765886
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- W. Dwyer and A. Zabrodsky, Maps between classifying spaces, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp. 106–119. MR 928826, DOI 10.1007/BFb0083003
- D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366–391. MR 104728, DOI 10.2307/1970188
- Peter John Hilton and Urs Stammbach, A course in homological algebra, Graduate Texts in Mathematics, Vol. 4, Springer-Verlag, New York-Berlin, 1971. MR 0346025, DOI 10.1007/978-1-4684-9936-0
- Sören Illman, Equivariant singular homology and cohomology. I, Mem. Amer. Math. Soc. 1 (1975), no. issue 2, 156, ii+74. MR 375286, DOI 10.1090/memo/0156
- Stefan Jackowski, James E. McClure, and Bob Oliver, Self-maps of classifying spaces of compact simple Lie groups, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 65–72. MR 1010725, DOI 10.1090/S0273-0979-1990-15841-0
- Dietrich Notbohm, Maps between classifying spaces, Math. Z. 207 (1991), no. 1, 153–168. MR 1106820, DOI 10.1007/BF02571382 —, Maps between classifying spaces and applications, Math. Gott. Heft 20 (1991).
- Dietrich Notbohm and Larry Smith, Fake Lie groups and maximal tori. I, II, Math. Ann. 288 (1990), no. 4, 637–661, 663–673. MR 1081269, DOI 10.1007/BF01444556
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 251-258
- MSC: Primary 55R35; Secondary 55P60
- DOI: https://doi.org/10.1090/S0002-9939-1993-1112487-6
- MathSciNet review: 1112487