A generalization of the punctured neighborhood theorem
HTML articles powered by AMS MathViewer
- by Woo Young Lee
- Proc. Amer. Math. Soc. 117 (1993), 107-109
- DOI: https://doi.org/10.1090/S0002-9939-1993-1113645-7
- PDF | Request permission
Abstract:
If $T \in \mathcal {L}(X)$ is regular on a Banach space $X$, with finite- dimensional intersection ${T^{ - 1}}(0) \cap T(X)$, and if $S,\;S’$ are invertible, commute with $T$ and have sufficiently small norm, then $\dim {(T - S’)^{ - 1}}(0) = \dim {(T - S)^{ - 1}}(0)$ and $\dim X/(T - S’)X = \dim X/(T - S)X$.References
- Seymour Goldberg, Unbounded linear operators: Theory and applications, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0200692
- Robin Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, Inc., New York, 1988. MR 920812
- Harro G. Heuser, Functional analysis, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1982. Translated from the German by John Horváth. MR 640429
- Woo Young Lee, Relatively open mappings, Proc. Amer. Math. Soc. 108 (1990), no. 1, 93–94. MR 984804, DOI 10.1090/S0002-9939-1990-0984804-6
- Woo Young Lee, Boundaries of the spectra in ${\scr L}(X)$, Proc. Amer. Math. Soc. 116 (1992), no. 1, 185–189. MR 1094504, DOI 10.1090/S0002-9939-1992-1094504-4
- C. R. Putnam, The spectra of operators having resolvents of first-order growth, Trans. Amer. Math. Soc. 133 (1968), 505–510. MR 229073, DOI 10.1090/S0002-9947-1968-0229073-2
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 107-109
- MSC: Primary 47A10
- DOI: https://doi.org/10.1090/S0002-9939-1993-1113645-7
- MathSciNet review: 1113645