Refinements of Ky Fan’s inequality
HTML articles powered by AMS MathViewer
- by Horst Alzer
- Proc. Amer. Math. Soc. 117 (1993), 159-165
- DOI: https://doi.org/10.1090/S0002-9939-1993-1116251-3
- PDF | Request permission
Abstract:
We prove the inequalities \[ A_n’ /G_n’ \leqslant (1 - G_n’ )/(1 - A_n’ ) \leqslant {A_n}/{G_n}\] and \[ A_n’ /G_n’ \leqslant (1 - {G_n})/(1 - {A_n}) \leqslant {A_n}/{G_n},\] where ${A_n}$ and ${G_n}$ (respectively, $A_n’$ and $G_n’$) denote the unweighted arithmetic and geometric means of ${x_1}, \ldots ,{x_n}$ (respectively, $1 - {x_1}, \ldots ,\;1 - {x_n}$) with ${x_i} \in (0,\tfrac {1} {2}](i = 1, \ldots ,n;n \geqslant 2$. Further we show that the ratios $(1 - G_n’ )/(1 - A_n’)$ and $(1 - {G_n})/(1 - {A_n})$ can be compared if and only if $n = 2$.References
- Horst Alzer, Ungleichungen für geometrische und arithmetische Mittelwerte, Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 4, 365–374 (German). MR 976521, DOI 10.1016/S1385-7258(88)80016-7
- Horst Alzer, Tsuyoshi Ando, and Yoshihiro Nakamura, The inequalities of W. Sierpiński and Ky Fan, J. Math. Anal. Appl. 149 (1990), no. 2, 497–512. MR 1057690, DOI 10.1016/0022-247X(90)90058-N
- Edwin F. Beckenbach and Richard Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 30, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 0158038, DOI 10.1007/978-3-642-64971-4
- F. Chan, D. Goldberg, and S. Gonek, On extensions of an inequality among means, Proc. Amer. Math. Soc. 42 (1974), 202–207 (1974). MR 338295, DOI 10.1090/S0002-9939-1974-0338295-X
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 159-165
- MSC: Primary 26D20
- DOI: https://doi.org/10.1090/S0002-9939-1993-1116251-3
- MathSciNet review: 1116251