Complexity of winning strategies for $\Delta ^ 0_ 2$ games
HTML articles powered by AMS MathViewer
- by Rana Barua
- Proc. Amer. Math. Soc. 117 (1993), 227-233
- DOI: https://doi.org/10.1090/S0002-9939-1993-1119261-5
- PDF | Request permission
Abstract:
For a $\Delta _2^0$ game played on $\omega$, we show that the winning player has a winning strategy that is recursive in ${\mathbb {E}_1}$, where ${\mathbb {E}_1}$ is the total type-$2$ object that embodies operation $\mathcal {A}$.References
- P. Aczel, Representability in some systems of second order arithmetic, Israel J. Math. 8 (1970), 309–328. MR 269501, DOI 10.1007/BF02798678 R. Barua, Structure of hyperarithmetical sets of ambiguous Borel classes, I. S. I. Tech. Report no. 15/85, 1985.
- Rana Barua, A note on $_2\textrm {sc}(\textbf {E}_1)$, Proc. Amer. Math. Soc. 103 (1988), no. 3, 921–925. MR 947683, DOI 10.1090/S0002-9939-1988-0947683-X J. P. Burgess, Classical hierarchies from a modern standpoint, Part I: $\mathcal {C}$-sets, Fund. Math. 115 (1983), 81-95; Part II: $R$-sets, 97-105.
- Peter G. Hinman, Recursion-theoretic hierarchies, Perspectives in Mathematical Logic, Springer-Verlag, Berlin-New York, 1978. MR 499205, DOI 10.1007/978-3-662-12898-5
- Peter G. Hinman, Hierarchies of effective descriptive set theory, Trans. Amer. Math. Soc. 142 (1969), 111–140. MR 265161, DOI 10.1090/S0002-9947-1969-0265161-3
- Thomas John, Recursion in Kolmogorov’s $R$-operator and the ordinal $\sigma _3$, J. Symbolic Logic 51 (1986), no. 1, 1–11. MR 830066, DOI 10.2307/2273936
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Alain Louveau, A separation theorem for $\Sigma ^{1}_{1}$ sets, Trans. Amer. Math. Soc. 260 (1980), no. 2, 363–378. MR 574785, DOI 10.1090/S0002-9947-1980-0574785-X
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 227-233
- MSC: Primary 03D65
- DOI: https://doi.org/10.1090/S0002-9939-1993-1119261-5
- MathSciNet review: 1119261