A note on almost subnormal subgroups of linear groups
HTML articles powered by AMS MathViewer
- by B. A. F. Wehrfritz
- Proc. Amer. Math. Soc. 117 (1993), 17-21
- DOI: https://doi.org/10.1090/S0002-9939-1993-1119266-4
- PDF | Request permission
Abstract:
Following Hartley we say that a subgroup $H$ of a group $G$ is almost subnormal in $G$ if there is a series of subgroups $H = {H_0} \leqslant {H_1} \leqslant \cdots \leqslant {H_r} = G$ of $G$ of finite length such that for each $i < r$ either ${H_i}$ is normal in ${H_{i + 1}}$ or ${H_i}$ has finite index in ${H_{i + 1}}$. We extend a result of Hartley’s on arithmetic groups (see Theorem $2$ of Hartley’s Free groups in normal subgroups of unit groups and arithmetic groups, Contemp. Math., vol. 93, Amer. Math. Soc., Providence, RI, 1989, pp. 173-177) to arbitrary linear groups. Specifically, we prove: let $G$ be any linear group with connected component of the identity ${G^0}$ and unipotent radical $U$. If $H$ is any soluble-by-finite, almost subnormal subgroup of $G$ then $[H \cap {G^0},{G^0}] \leqslant U$.References
- B. Hartley, Free groups in normal subgroups of unit groups and arithmetic groups, Representation theory, group rings, and coding theory, Contemp. Math., vol. 93, Amer. Math. Soc., Providence, RI, 1989, pp. 173–177. MR 1003352, DOI 10.1090/conm/093/1003352
- B. A. F. Wehrfritz, Infinite linear groups. An account of the group-theoretic properties of infinite groups of matrices, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 76, Springer-Verlag, New York-Heidelberg, 1973. MR 0335656
- B. A. F. Wehrfritz, On the Lie-Kolchin-Mal′cev theorem, J. Austral. Math. Soc. Ser. A 26 (1978), no. 3, 270–276. MR 515743
- B. A. F. Wehrfritz, Lectures around complete local rings, Queen Mary College Mathematics Notes, Queen Mary College, Department of Pure Mathematics, London, 1979. MR 550883
- B. A. F. Wehrfritz, Wielandt’s subnormality criterion and linear groups, J. Algebra 67 (1980), no. 2, 491–503. MR 602076, DOI 10.1016/0021-8693(80)90173-8
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 17-21
- MSC: Primary 20E15; Secondary 20G15
- DOI: https://doi.org/10.1090/S0002-9939-1993-1119266-4
- MathSciNet review: 1119266