$A_ 2$-annihilated elements in $H_ *(\Omega \Sigma \textbf {R}\textrm {P}^ 2)$
HTML articles powered by AMS MathViewer
- by D. J. Anick and F. P. Peterson
- Proc. Amer. Math. Soc. 117 (1993), 243-250
- DOI: https://doi.org/10.1090/S0002-9939-1993-1123647-2
- PDF | Request permission
Abstract:
Let ${X^n}$ denote the smash product of $n$ copies of $\mathbb {R}{\mathbb {P}^2}$. We describe a minimal set of generators for ${H^{\ast }}({X^n};{\mathbb {Z}_2})$ as a module over the $\bmod 2$ Steenrod algebra. The description includes a procedure to obtain all of the generators, a generating function to enumerate them, and a proof of a nice conjecture about how many there are in each dimension.References
- David J. Anick, On the homogeneous invariants of a tensor algebra, Algebraic topology (Evanston, IL, 1988) Contemp. Math., vol. 96, Amer. Math. Soc., Providence, RI, 1989, pp. 15–17. MR 1022670, DOI 10.1090/conm/096/1022670
- Richard A. Brualdi, Introductory combinatorics, North-Holland, New York-Oxford-Amsterdam, 1977. MR 0505522
- H. E. A. Campbell and P. S. Selick, Polynomial algebras over the Steenrod algebra, Comment. Math. Helv. 65 (1990), no. 2, 171–180. MR 1057238, DOI 10.1007/BF02566601 J. Harris, T. Hunter, and J. Shank, Steenrod algebra module maps from ${H^{\ast }}{(BZ/p)^n}$ to ${H^{\ast }}{(BZ/p)^s}$, Trans. Amer. Math. Soc. (to appear).
- John C. Harris and Nicholas J. Kuhn, Stable decompositions of classifying spaces of finite abelian $p$-groups, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 3, 427–449. MR 932667, DOI 10.1017/S0305004100065038
- Stephen A. Mitchell and Stewart B. Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), no. 3, 285–298. MR 710102, DOI 10.1016/0040-9383(83)90014-9 F. P. Peterson, Generators of ${H^{\ast }}(R{P^\infty } \wedge R{P^\infty })$ as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., no. 833-55-89, Amer. Math. Soc., Providence, RI, April 1987.
- William M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), no. 4, 493–523. MR 1022818, DOI 10.1007/BF01221587
- R. M. W. Wood, Modular representations of $\textrm {GL}(n,F_p)$ and homotopy theory, Algebraic topology, Göttingen 1984, Lecture Notes in Math., vol. 1172, Springer, Berlin, 1985, pp. 188–203. MR 825782, DOI 10.1007/BFb0074432
- R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 307–309. MR 974986, DOI 10.1017/S0305004100067797
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 243-250
- MSC: Primary 55S10; Secondary 55R40
- DOI: https://doi.org/10.1090/S0002-9939-1993-1123647-2
- MathSciNet review: 1123647