Real analytic Radon transforms on rank one symmetric spaces
HTML articles powered by AMS MathViewer
- by Eric Todd Quinto
- Proc. Amer. Math. Soc. 117 (1993), 179-186
- DOI: https://doi.org/10.1090/S0002-9939-1993-1135080-8
- PDF | Request permission
Abstract:
Using microlocal techniques, we prove support theorems for Radon transforms with real analytic measures on horocycles in rank one symmetric spaces. We generalize Helgason’s support theorem to this case and prove a new local support theorem.References
- Jan Boman, Uniqueness and non-uniqueness for microanalytic continuation of ultradistributions, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998) Contemp. Math., vol. 251, Amer. Math. Soc., Providence, RI, 2000, pp. 61–82. MR 1771259, DOI 10.1090/conm/251/03860
- Jan Boman and Eric Todd Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J. 55 (1987), no. 4, 943–948. MR 916130, DOI 10.1215/S0012-7094-87-05547-5 —, Support theorems for real analytic Radon transforms on line complexes in ${\mathbb {R}^3}$, Trans. Amer. Math. Soc. (to appear).
- A. M. Cormack, The Radon transform on a family of curves in the plane, Proc. Amer. Math. Soc. 83 (1981), no. 2, 325–330. MR 624923, DOI 10.1090/S0002-9939-1981-0624923-1
- David V. Finch, Uniqueness for the attenuated x-ray transform in the physical range, Inverse Problems 2 (1986), no. 2, 197–203. MR 847534
- Josip Globevnik, A support theorem for the X-ray transform, J. Math. Anal. Appl. 165 (1992), no. 1, 284–287. MR 1151072, DOI 10.1016/0022-247X(92)90079-S F. Gonzalez and E. T. Quinto, Microlocal analysis and Radon transforms on higher rank symmetric spaces, 1992.
- Allan Greenleaf and Gunther Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke Math. J. 58 (1989), no. 1, 205–240. MR 1016420, DOI 10.1215/S0012-7094-89-05811-0 V. Guillemin, Some remarks on integral geometry, unpublished, 1975.
- Victor Guillemin, On some results of Gel′fand in integral geometry, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 149–155. MR 812288, DOI 10.1090/pspum/043/812288
- Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, Mathematical Surveys, No. 14, American Mathematical Society, Providence, R.I., 1977. MR 0516965
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- S. Helgason, Duality and Radon transform for symmetric spaces, Amer. J. Math. 85 (1963), 667–692. MR 158409, DOI 10.2307/2373114
- Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/0001-8708(70)90037-X
- Sigurdur Helgason, The surjectivity of invariant differential operators on symmetric spaces. I, Ann. of Math. (2) 98 (1973), 451–479. MR 367562, DOI 10.2307/1970914
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- A. Kaneko, Introduction to hyperfunctions, Mathematics and its Applications (Japanese Series), vol. 3, Kluwer Academic Publishers Group, Dordrecht; SCIPRESS, Tokyo, 1988. Translated from the Japanese by Y. Yamamoto. MR 1026013
- Jeremy Orloff, Invariant Radon transforms on a symmetric space, Integral geometry and tomography (Arcata, CA, 1989) Contemp. Math., vol. 113, Amer. Math. Soc., Providence, RI, 1990, pp. 233–242. MR 1108657, DOI 10.1090/conm/113/1108657
- Eric Todd Quinto, The dependence of the generalized Radon transform on defining measures, Trans. Amer. Math. Soc. 257 (1980), no. 2, 331–346. MR 552261, DOI 10.1090/S0002-9947-1980-0552261-8
- Eric Todd Quinto, The invertibility of rotation invariant Radon transforms, J. Math. Anal. Appl. 91 (1983), no. 2, 510–522. MR 690884, DOI 10.1016/0022-247X(83)90165-8
- Eric Todd Quinto, Tomographic reconstructions from incomplete data—numerical inversion of the exterior Radon transform, Inverse Problems 4 (1988), no. 3, 867–876. MR 965651
- Mikio Sato, Takahiro Kawai, and Masaki Kashiwara, Microfunctions and pseudo-differential equations, Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971; dedicated to the memory of André Martineau), Lecture Notes in Math., Vol. 287, Springer, Berlin, 1973, pp. 265–529. MR 0420735
- L. A. Shepp and J. B. Kruskal, Computerized Tomography: The New Medical X-Ray Technology, Amer. Math. Monthly 85 (1978), no. 6, 420–439. MR 1538734, DOI 10.2307/2320062
- Donald C. Solmon, The $X$-ray transform, J. Math. Anal. Appl. 56 (1976), no. 1, 61–83. MR 481961, DOI 10.1016/0022-247X(76)90008-1
- François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, University Series in Mathematics, Plenum Press, New York-London, 1980. Fourier integral operators. MR 597145
- Nolan R. Wallach, Harmonic analysis on homogeneous spaces, Pure and Applied Mathematics, No. 19, Marcel Dekker, Inc., New York, 1973. MR 0498996
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 179-186
- MSC: Primary 44A12; Secondary 43A55
- DOI: https://doi.org/10.1090/S0002-9939-1993-1135080-8
- MathSciNet review: 1135080