Nonresonance conditions on the potential for a second-order periodic boundary value problem
HTML articles powered by AMS MathViewer
- by Pierpaolo Omari and Fabio Zanolin
- Proc. Amer. Math. Soc. 117 (1993), 125-135
- DOI: https://doi.org/10.1090/S0002-9939-1993-1143021-2
- PDF | Request permission
Abstract:
We consider the periodic problem \[ \begin {array}{*{20}{c}} { - u'' = f(u) + h(t),} \\ {u(0) = u(2\pi ),\qquad u’(0) = u’(2\pi ),} \\ \end {array} \] and prove its solvability for any given $h$, under new assumptions on the asymptotic behaviour of the potential of the nonlinearity $f$, with respect to two consecutive eigenvalues of the associated linear problem.References
- S. Ahmad, A. C. Lazer, and J. L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. J. 25 (1976), no. 10, 933–944. MR 427825, DOI 10.1512/iumj.1976.25.25074
- D. G. Costa and A. S. Oliveira, Existence of solution for a class of semilinear elliptic problems at double resonance, Bol. Soc. Brasil. Mat. 19 (1988), no. 1, 21–37. MR 1018926, DOI 10.1007/BF02584819
- Djairo G. de Figueiredo and Jean-Pierre Gossez, Conditions de non-résonance pour certains problèmes elliptiques semi-linéaires, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 15, 543–545 (French, with English summary). MR 845644
- Tong Ren Ding, Nonlinear oscillations at a point of resonance, Sci. Sinica Ser. A 25 (1982), no. 9, 918–931. MR 681856
- Tong Ren Ding, Rita Iannacci, and Fabio Zanolin, Existence and multiplicity results for periodic solutions of semilinear Duffing equations, J. Differential Equations 105 (1993), no. 2, 364–409. MR 1240400, DOI 10.1006/jdeq.1993.1093
- Tong Ren Ding and Fabio Zanolin, Time-maps for the solvability of periodically perturbed nonlinear Duffing equations, Nonlinear Anal. 17 (1991), no. 7, 635–653. MR 1128965, DOI 10.1016/0362-546X(91)90111-D
- C. Fabry and A. Fonda, Periodic solutions of nonlinear differential equations with double resonance, Ann. Mat. Pura Appl. (4) 157 (1990), 99–116. MR 1108472, DOI 10.1007/BF01765314
- Jean-Pierre Gossez and Pierpaolo Omari, Nonresonance with respect to the Fučik spectrum for periodic solutions of second order ordinary differential equations, Nonlinear Anal. 14 (1990), no. 12, 1079–1104. MR 1059615, DOI 10.1016/0362-546X(90)90069-S
- Jean-Pierre Gossez and Pierpaolo Omari, Periodic solutions of a second order ordinary differential equation: a necessary and sufficient condition for nonresonance, J. Differential Equations 94 (1991), no. 1, 67–82. MR 1133541, DOI 10.1016/0022-0396(91)90103-G
- J. Mawhin and M. Willem, Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), no. 6, 431–453 (English, with French summary). MR 870864
- Jean Mawhin and Michel Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. MR 982267, DOI 10.1007/978-1-4757-2061-7
- Pierpaolo Omari and Fabio Zanolin, A note on nonlinear oscillations at resonance, Acta Math. Sinica (N.S.) 3 (1987), no. 4, 351–361. MR 930765, DOI 10.1007/BF02559915 D. Qian, An abundance of periodic solutions for Duffing equation with oscillatory time-map, preprint, 1990.
- M. Ramos, Remarks on resonance problems with unbounded perturbations, Differential Integral Equations 6 (1993), no. 1, 215–223. MR 1190173
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 125-135
- MSC: Primary 34B15; Secondary 47H15
- DOI: https://doi.org/10.1090/S0002-9939-1993-1143021-2
- MathSciNet review: 1143021