DIFFERENTIATION OF ZYGMUND FUNCTIONS

DAVID C. ULLRICH

(Communicated by J. Marshall Ash)

Abstract. The “little-\(o\) Zygmund class” \(\lambda^*\) contains a nowhere-differentiable function.

0. Introduction

A classical result due originally to Rajchman and then improved by Zygmund [ZY, p. 43] states that if \(f \in \lambda^*(T) \) and \(f \) is real valued then \(f \) must be differentiable on a dense subset of \(T \). This implies that if \(F \in \mathcal{B}_o \) (the “little-\(o\) Bloch space”) then \(\text{Re}(F) \) must possess a radial (and hence nontangential) limit at each point of a dense subset of the boundary.

Somewhat more recently, it was shown [GHP, Theorem 2] that \(F \) itself must have a radial limit at each point of a dense subset of the boundary, if \(F \in \mathcal{B}_o \). As noted in [GHP], this would follow from the result of Rajchman and Zygmund if the latter were true for a general (complex-valued) element of \(\lambda^* \), but this question has been open. In this note we show that there exists an \(f \in \lambda^* \) that is nowhere differentiable and that, in fact, satisfies a Hölder condition of order one at no point.

It turns out that the existence of a nowhere differentiable \(f \in \lambda^* \) is also one of various results in [MAK2], including the fact that if \(f \in \lambda^* \) and is either real-valued or extends to a function holomorphic in the disc then the set of points where \(f \) is differentiable must have Hausdorff dimension 1. (The results in [MAK2] are proved in more detail in [MAK1], in particular, cf. [MAK1, Theorem 5.5].) It seems that the extremely simple argument below may nonetheless be of some independent interest: If \(u \) is an appropriate (real-valued) lacunary trigonometric series then \(u \in \lambda^* \) and \(u \) is differentiable only on a set of measure zero. Now one may construct \(v \in \lambda^* \) so that \(f = u + iv \) is nowhere differentiable (in particular, we do not require the main technical device in [MAK2]—a characterization of the dyadic martingales arising from elements of \(\lambda^* \)).

1. Theorem

The notation \(\lambda^*(T) \) refers to the “little-\(o\) ” Zygmund class on the unit circle \(T \) : we write \(f \in \lambda^*(T) \) if \(f \) is a continuous (complex-valued) function on \(T \).
and
\[\lim_{h \to 0} h^{-1}|f(e^{it-h}) - 2f(e^{it}) + f(e^{it+h})| = 0, \]
uniformly in \(t \) (the functions in \(\mathcal{X}^* \) are called “smooth functions” in [ZY]).

We set
\[M_f(t) = \sup_{h>0} h^{-1}|f(e^{it+h}) - f(e^{it})|, \]
so that \(f \) satisfies a Hölder condition of order 1 at \(e^{it} \) if and only if \(M_f(t) < \infty \).

Theorem. There exists \(f \in \mathcal{X}^*(T) \) such that \(M_f(t) \equiv \infty \).

We will set \(f = u + iv \), where \(u \in \mathcal{X}^* \) is a (real-valued) lacunary series with \(Mu = \infty \) a.e. It is impossible to achieve \(Mu \equiv \infty \) here, but the following proposition will provide us with a real-valued function \(v \in \mathcal{X}^* \) such that \(Mv = \infty \) at every point of the set where \(Mu < \infty \).

Proposition. Suppose \(E \subset T \) is an \(F_\alpha \) of (Lebesgue) measure zero. Then there exists a real-valued \(v \in \mathcal{X}^*(T) \) such that \((d/dt)v(e^{it}) = \infty \) for every \(t \in E \).

This will follow from the following lemma. The notation \(\text{VMO}(T) \) refers to the space of functions of vanishing mean oscillation, as usual.

Lemma. Suppose \(E \) is as in the proposition. There exists \(\phi \in \text{VMO}(T) \) such that \(\phi \geq 0 \) on \(T \) and \(\lim_{s \to t} \phi(e^{is}) = \infty \) for every \(e^{it} \in E \).

Proof. If we can prove the lemma for compact \(E \) then the general case follows because \(\phi \geq 0 \). Suppose \(E \subset T \) is a compact set of measure zero.

This implies that \(E \) is a peak set for the disc algebra: there exists a function \(g \) that is holomorphic in the unit disc \(D \) and continuous on \(\overline{D} \), such that \(g(e^{it}) = 1 \) for \(e^{it} \in E \), while \(|g(z)| < 1 \) for \(z \in \overline{D} \setminus E \).

Now let \(\Omega = \{ x + iy : x > 1, |y| < 1/x \} \) and let \(\psi : D \to \Omega \) be holomorphic and surjective. A theorem of Carathéodory shows that \(\psi \) extends to a homeomorphism \(\overline{\psi} : \overline{D} \to \overline{\Omega} \), where \(\overline{\Omega} \) denotes the closure of \(\Omega \) on \(S \), the Riemann sphere; we may take \(\overline{\psi}(1) = \infty \).

Thus \(G = \overline{\psi} \circ g : \overline{D} \to S \) is continuous. Let \(\phi = \text{Re}(G) \). Then \(\phi \) (restricted to \(T \)) is a continuous map from \(T \) to \([0, \infty]\) such that \(\phi(e^{it}) = \infty \) for \(e^{it} \in E \). We only need to show that \(\phi \in \text{VMO} \), but \(\phi \in \text{VMO} \) because \(\phi \) is the harmonic conjugate of a continuous function: The point to our choice of \(\Omega \) was that \(\text{Im}(z) \to 0 \) as \(z \) tends to \(\infty \) within \(\Omega \), and this shows that \(\text{Im}(G) \in C(T) \). \(\square \)

Proof of the proposition. Given an \(F_\alpha \) set \(E \subset T \) of measure zero, choose \(\phi \) as in the lemma. Now define \(\phi_1 = \phi - c \), where \(c = (2\pi)^{-1} \int_0^{2\pi} \phi(e^{it}) \, dt \), and let \(v \) be an absolutely continuous function such that \((d/dt)v(e^{it}) = \phi_1(e^{it}) \) almost everywhere. It follows that \((d/dt)v(e^{it}) = \infty \) for \(t \in E \), while the fact that \(\phi \in \text{VMO} \) implies that \(v \in \mathcal{X}^* \). \(\square \)
Proof of the theorem. Choose a sequence $a_j \geq 0$ with $\lim_{j \to \infty} a_j = 0$ but $\sum_{j=1}^{\infty} a_j^2 = \infty$, and set

$$u(e^{it}) = \sum_{j=1}^{\infty} 2^{-j} a_j \cos(2^j t).$$

Now the fact that $a_j \to 0$ shows that $u \in \lambda^*$ [ZY, Theorem 4.10, p. 47], while $\sum_{j=1}^{\infty} a_j^2 = \infty$ shows that $Mu(e^{it}) = \infty$ for almost all t. This will be "clear" to readers with some experience dealing with lacunary series; a proof is already at least implicit in [ZY]:

Let $d_N(t) = -\sum_{j=1}^{N} a_j \sin(2^j t)$. Then it is well known that $(d_N(t))$ is unbounded for almost every value of t [ZY, Theorem 6.4, p. 203 and Remark (c), p. 205]. But it is easy to obtain a uniform upper bound on the quantity

$$h_N^{-1}[u(e^{i(t+h_N)}) - u(e^{it})] - d_N(t)$$

if $h_N = 2^{-N} \pi$, so that $Mu = \infty$ at any point where (d_N) is unbounded.

Now let $E = \{ e^{it} : Mu(e^{it}) < \infty \}$. We have just seen that E has measure zero. Continuity of $u \in \lambda^*$ shows that $\{Mu \leq j\}$ is closed for $j = 1, 2, \ldots$, so that E is an F_σ. Choose v as in the proposition and let $f = u + iv$. Then $f \in \lambda^*$ and $Mf \equiv \infty$. □

References

Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078–0001
E-mail address: ULLRICH@HARDY.MATH.OKSTATE.EDU