Interspersions and dispersions
HTML articles powered by AMS MathViewer
- by Clark Kimberling
- Proc. Amer. Math. Soc. 117 (1993), 313-321
- DOI: https://doi.org/10.1090/S0002-9939-1993-1111434-0
- PDF | Request permission
Abstract:
An array $A = ({a_{ij}})$ of all the positive integers is an interspersion if the terms of any two rows, from some point on, alternate in size, and a dispersion if, for a suitable sequence $({s_n})$, the recurrence ${a_j} = {s_{{a_{j - 1}}}}$ holds for each entry ${a_j}$ of each row of $A$, for $j \geqslant 2$. An array is proved here to be an interspersion if and only if it is a dispersion. Such arrays whose rows satisfy certain recurrences are considered.References
- Aviezri S. Fraenkel, The bracket function and complementary sets of integers, Canadian J. Math. 21 (1969), 6–27. MR 234900, DOI 10.4153/CJM-1969-002-7
- R. L. Graham, Covering the positive integers by disjoint sets of the form $\{[n\alpha +\beta ]:$ $n=1,\,2,\,\ldots \}$, J. Combinatorial Theory Ser. A 15 (1973), 354–358. MR 325564, DOI 10.1016/0097-3165(73)90084-8
- Marshall Hall Jr., Combinatorial theory, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1967. MR 0224481
- David R. Morrison, A Stolarsky array of Wythoff pairs, A collection of manuscripts related to the Fibonacci sequence, Fibonacci Assoc., Santa Clara, Calif., 1980, pp. 134–136. MR 624110
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 313-321
- MSC: Primary 11B75; Secondary 11B37
- DOI: https://doi.org/10.1090/S0002-9939-1993-1111434-0
- MathSciNet review: 1111434