TOEPLITZ OPERATORS ON CARTAN DOMAINS
ESSENTIALLY COMMUTE WITH A BILATERAL SHIFT

MIROSLAV ENGLIS

(Communicated by Theodore W. Gamelin)

Abstract. For bounded symmetric domains \(\Omega \subset \mathbb{C}^N \), a bilateral shift operator \(U \) is shown to exist on the Bergman space \(A^2(\Omega) \) such that \(UT_f - T_f U \) is a compact operator for all Toeplitz operators \(T_f \). This may be viewed as an extension of the well-known fact that \(S^* T S - T = 0 \) whenever \(T \) is a Toeplitz operator on \(H^2 \), \(S \) being the unipotent shift. It also follows that the \(C^* \)-algebra generated by Toeplitz operators on \(A^2(\Omega) \) does not contain all bounded operators.

Let \(\Omega \) be a bounded symmetric (Cartan) domain with its standard (Harish-Chandra) realization in \(\mathbb{C}^N \), \(dv \) the \(2n \)-dimensional Lebesgue measure on \(\Omega \), and \(L^2(\Omega, dv) \) the Hilbert space of square-integrable complex-valued functions on \(\Omega \). The Bergman space, \(A^2(\Omega) \), is the closed subspace of \(L^2(\Omega, dv) \) consisting of functions analytic on \(\Omega \). Denote by \(P \) the orthogonal projection from \(L^2 \) onto \(A^2 \). For \(f \in L^\infty(\Omega) \), the Toeplitz operator \(T_f : A^2 \to A^2 \) and the Hankel operator \(H_f : A^2 \to L^2 \otimes A^2 \) are given by

\[
T_f x = P(fx), \quad H_f x = (I - P)(fx).
\]

These operators generalize, in an obvious way, the well-known Toeplitz and Hankel operators on \(H^2 \) [5, Chapter 25].

The main result of the present note is the following theorem.

Theorem. There is a bilateral shift \(U \) on \(A^2(\Omega) \) such that for all \(f \in L^\infty(\Omega) \) the commutator \([U, T_f] \equiv UT_f - T_f U \) is a compact operator.

Proof. We first introduce some notation and terminology from [1, 2]. Let \(\beta(\cdot, \cdot) \) be the Bergman metric on \(\Omega \) [6] and \(\text{dist}(-, -) \) the usual euclidean metric in \(\mathbb{C}^N = \mathbb{R}^{2N} \). Denote by \(BC(\Omega) \) the algebra of bounded continuous complex-valued functions on \(\Omega \), with \(C_0(\Omega) \) the subalgebra of functions for which \(f(z) \to 0 \) as \(\text{dist}(z, \partial\Omega) \to 0 \). Define

\[
\text{Osc}(f, z) = \sup\{|f(w) - f(z)| : \beta(z, w) < 1\},
\]

the oscillation of \(f \) at \(z \), and

\[
\text{VO}_0(\Omega) = \{f \in BC(\Omega) : \text{Osc}(f, \cdot) \in C_0(\Omega)\},
\]

Received by the editors May 30, 1991.

1991 Mathematics Subject Classification. Primary 47B35; Secondary 32M15.

Key words and phrases. Toeplitz operators, bounded symmetric domains.
the algebra of functions with vanishing oscillation at the boundary.

Consider the function \(\Phi \) on \(\Omega \) given by
\[
\Phi(z) = \exp(i \sqrt{\beta(0, z)}).
\]
It is well known [1] that \(\Phi \in \text{VO}_\partial(\Omega) \). Indeed,
\[
|\Phi(z) - \Phi(w)| \leq |\beta(0, z)^{1/2} - \beta(0, w)^{1/2}|
\leq \frac{\beta(0, z)^{1/2} + \beta(0, w)^{1/2}}{\beta(0, z)^{1/2} + \beta(0, w)^{1/2}}
\]
and the assertion is immediate since \(\beta(0, x) \to +\infty \) as \(\text{dist}(x, \partial \Omega) \to 0 \).

Hence, by [2, Theorem B], \(H_\Phi \) and \(H_\Phi^* \) are compact operators. According to a well-known commutator identity for Toeplitz operators,
\[
T_fT_g - T_gT_f = H_f^*H_g - H_g^*H_f
\]
for arbitrary \(f, g \in L^\infty(\Omega) \). Taking \(g = \Phi \), we see that the commutator \(T_fT_\Phi - T_\Phi T_f \equiv [T_f, T_\Phi] \) is compact \(\forall f \in L^\infty(\Omega) \). Thus the proof will be accomplished if we find a compact operator \(K \) such that \(T_\Phi + K \) is a bilateral shift with respect to some basis. Since, in particular, \([T_\Phi, T_\Phi] \) is compact, \(T_\Phi \) is essentially normal. Hence, by the Brown-Douglas-Fillmore theory [3], it suffices to show that the essential spectrum of \(T_\Phi \) is the unit circle, \(\mathbb{T} \), and that \(\text{ind } T_\Phi = 0 \).

Denote
\[
\mathcal{E} = \{ f \in L^\infty(\Omega) : H_f \text{ and } H_f^* \text{ are compact} \},
\]
and let \(\tau(\mathcal{E}) \) be the C*-algebra generated by \(\{ T_f : f \in \mathcal{E} \} \). By [1, Theorem B], there is a C*-isomorphism
\[
\tau(\mathcal{E})/\text{Compacts} \simeq \text{VO}_\partial/\mathcal{C}_\partial(\Omega)
\]
which maps \(T_f \) into the coset \([f]\) of \(f \) in \(\text{VO}_\partial/\mathcal{C}_\partial \). It follows that, for \(f \in \mathcal{E} \), \(\sigma_c(T_f) \) coincides with the spectrum of \([f]\) in \(\text{VO}_\partial/\mathcal{C}_\partial(\Omega) \). Since \([f]\) is invertible in \(\text{VO}_\partial/\mathcal{C}_\partial \) iff it is invertible in \(L^\infty/\mathcal{C}_\partial \), the latter spectrum is easily seen to coincide with the set of all cluster values of \(f \) at \(\partial \Omega \),
\[
\sigma_{\text{VO}_\partial/\mathcal{C}_\partial}([f]) = \bigcap_{R > 0} \{ f(z) : \beta(0, z) > R \}.
\]
Taking \(f = \Phi \), we conclude that
\[
\sigma_{\text{VO}_\partial}([\Phi]) = \bigcap_{R > 0} \{ \Phi(z) : \beta(0, z) > R \} = \mathbb{T},
\]
which proves the first claim.

To compute the Fredholm index of \(T_\Phi \), consider the functions
\[
\Phi_m(z) = \exp\left(\frac{i}{m} \sqrt{\beta(0, z)}\right),
\]
where \(m \) is a positive integer (thus, \(\Phi_1 = \Phi \)). Everything that was said about \(\Phi \) is readily seen to apply to \(\Phi_m \) as well: \(\Phi_m \) is a bounded continuous function that belongs to \(\text{VO}_\partial \), so that \(H_{\Phi_m}, H_{\Phi_m^*} \) are compact operators and \(\Phi_m \in \mathcal{E} \);
further, $\sigma_e(T_{\Phi_m}) = T$, so T_{Φ_m} are Fredholm operators. Since $\Phi_m' = \Phi$, it follows from (*) that $T_{\Phi_m}' = T_{\Phi}$ modulo the compacts. Thus, we have

$$\text{ind } T_{\Phi} = \text{ind } T_{\Phi_m}' = m \cdot \text{ind } T_{\Phi_m}$$

for all positive integers m, which is only possible when $\text{ind } T_{\Phi} = 0$. The proof is complete.

For Toeplitz operators on the N-dimensional Fock space $A^2(\mathbb{C}^N)$, $N \geq 1$, a similar result was obtained by the present author in [4]. It is also shown there that for arbitrary bounded planar domain $\Omega \subset \mathbb{C}$ there exists a unilateral shift operator S on the Bergman space $A^2(\Omega)$ such that, for all Toeplitz operators T_f, $ST_f - T_fS$ is compact. The assertion was also proved for the one-dimensional Fock space $A^2(\mathbb{C})$. These results may be compared with the classical characterization [5, Problem 242] of Toeplitz operators on H^2:

$$T \text{ is a Toeplitz operator } \iff S^*TS = T,$$

S being the unilateral shift on H^2.

As a direct consequence of the above theorem, we have

Corollary. The C^*-algebra generated by all Toeplitz operators $\{T_f: f \in L^\infty(\Omega)\}$, where Ω is a bounded symmetric domain in \mathbb{C}^N, does not contain all bounded operators on $A^2(\Omega)$.

Proof. Let $U = T_{\Phi} + K$ be the bilateral shift obtained above. Since

$$[A + B, U] = [A, U] + [B, U], \quad [cA, U] = c[A, U],$$

and

$$\|A_n - A\| \to 0 \implies \|[A_n, U] - [A, U]\| \to 0,$$

we see that the essential commutant, U^ess, of U is a C^*-algebra. According to the preceding theorem, it contains all operators $T_f, f \in L^\infty(\Omega)$. It follows that U^ess contains the C^*-algebra generated by them as well, and we only have to find an operator not belonging to U^ess. Let $\{e_n\}_{n \in \mathbb{Z}}$ be a basis with respect to which U is the bilateral shift, i.e.,

$$Ue_n = e_{n+1}, \quad n \in \mathbb{Z},$$

and let J be given by

$$Je_n = (-1)^ne_n, \quad n \in \mathbb{Z}.$$

Then $JU - UJ = 2JU$ is not compact, and so $J \notin U^\text{ess}$.

References

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Mathematical Institute, Czechoslovak Academy of Sciences, Žitná 25, 115 67 Prague 1, Czechoslovakia

E-mail address: englis@cspgasl.bitnet

Current address: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506

E-mail address: englis@ksuvm.ksu.edu