Phi-stable operators and inner approximation-solvability
HTML articles powered by AMS MathViewer
- by Ram U. Verma
- Proc. Amer. Math. Soc. 117 (1993), 491-499
- DOI: https://doi.org/10.1090/S0002-9939-1993-1127144-X
- PDF | Request permission
Abstract:
We extend, by applying a theorem of Petryshyn (1970), the approximation-solvability of the nonlinear functional equations involving strongly stable Hilbert space mappings to the case of strongly $\phi$-stable mappings—a new and rather general class of mappings. These mappings constitute a generalization of monotone mappings. Finally, we upgrade the obtained results to the case of Banach space mappings.References
- F. E. Browder and W. V. Petryshyn, Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces, J. Functional Analysis 3 (1969), 217–245. MR 0244812, DOI 10.1016/0022-1236(69)90041-x
- Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404, DOI 10.1007/978-3-662-00547-7
- Athanassios G. Kartsatos, On the equation $Tx=y$ in Banach spaces with weakly continuous duality maps, Nonlinear equations in abstract spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex., 1977) Academic Press, New York, 1978, pp. 105–112. MR 502538
- M. A. Krasnosel′skiĭ, G. M. Vaĭnikko, P. P. Zabreĭko, Ya. B. Rutitskii, and V. Ya. Stetsenko, Approximate solution of operator equations, Wolters-Noordhoff Publishing, Groningen, 1972. Translated from the Russian by D. Louvish. MR 0385655
- R. N. Mukherjee and T. Som, On phi-monotone operators and variational inequalities, Bull. Calcutta Math. Soc. 80 (1988), no. 6, 401–405. MR 990970
- W. V. Petryshyn, Nonlinear equations involving noncompact operators, Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 206–233. MR 0271789
- W. V. Petryshyn, On the approximation-solvability of equations involving $A$-proper and psuedo-$A$-proper mappings, Bull. Amer. Math. Soc. 81 (1975), 223–312. MR 388173, DOI 10.1090/S0002-9904-1975-13728-1
- W. V. Petryshyn, Approximation-solvability of periodic boundary value problems via the $A$-proper mapping theory, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 261–282. MR 843614, DOI 10.1090/pspum/045.2/843614
- William O. Ray, Phi-accretive operators and Ekeland’s theorem, J. Math. Anal. Appl. 88 (1982), no. 2, 566–571. MR 667080, DOI 10.1016/0022-247X(82)90215-3
- I. G. Rosen, Convergence of Galerkin approximations for operator Riccati equations—a nonlinear evolution equation approach, J. Math. Anal. Appl. 155 (1991), no. 1, 226–248. MR 1089334, DOI 10.1016/0022-247X(91)90035-X
- Michel Théra, Existence results for the nonlinear complementarity problem and applications to nonlinear analysis, J. Math. Anal. Appl. 154 (1991), no. 2, 572–584. MR 1088652, DOI 10.1016/0022-247X(91)90059-9
- V. B. Trushin, On the solution of some nonlinear equations and variational inequalities, Dokl. Akad. Nauk SSSR 309 (1989), no. 2, 289–292 (Russian); English transl., Soviet Math. Dokl. 40 (1990), no. 3, 521–524. MR 1036142
- Ram U. Verma, Role of numerical range in approximation-solvability of nonlinear functional equations, Appl. Math. Lett. 5 (1992), no. 2, 25–27. MR 1154606, DOI 10.1016/0893-9659(92)90105-I
- Ram Verma and Ram Mohapatra, Application of numerical range to approximation-solvability of nonlinear functional equations, Panamer. Math. J. 1 (1991), 46–54. MR 1088866
- Eberhard Zeidler, Nonlinear functional analysis and its applications. II/B, Springer-Verlag, New York, 1990. Nonlinear monotone operators; Translated from the German by the author and Leo F. Boron. MR 1033498, DOI 10.1007/978-1-4612-0985-0
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 491-499
- MSC: Primary 47H17; Secondary 47H09, 65J15
- DOI: https://doi.org/10.1090/S0002-9939-1993-1127144-X
- MathSciNet review: 1127144