A seminorm with square property on a Banach algebra is submultiplicative
HTML articles powered by AMS MathViewer
- by S. J. Bhatt
- Proc. Amer. Math. Soc. 117 (1993), 435-438
- DOI: https://doi.org/10.1090/S0002-9939-1993-1128724-8
- PDF | Request permission
Abstract:
The result stated in the title is proved in a Banach algebra and is used to discuss (i) commutativity criteria in normed algebras, (ii) uniqueness of the uniform norm in uniform Banach algebras, and (iii) existence of continuous multiplicative linear functionals on topological algebras together with a simple reduction of the Michael problem in Fréchet algebras. Submultiplicativity does not imply subadditivity in the presence of the square property.References
- Richard Arens, The space $L^\omega$ and convex topological rings, Bull. Amer. Math. Soc. 52 (1946), 931–935. MR 17524, DOI 10.1090/S0002-9904-1946-08681-4
- Bernard Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Mathematics, vol. 735, Springer, Berlin, 1979 (French). MR 549769
- S. J. Bhatt and D. J. Karia, Uniqueness of the uniform norm with an application to topological algebras, Proc. Amer. Math. Soc. 116 (1992), no. 2, 499–503. MR 1097335, DOI 10.1090/S0002-9939-1992-1097335-4
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029 —, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Ser., vol. 2, London Math. Soc., Cambridge, 1971.
- H. G. Dales, A discontinuous homomorphism from $C(X)$, Amer. J. Math. 101 (1979), no. 3, 647–734. MR 533196, DOI 10.2307/2373803
- Ernest A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952), 79. MR 51444
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- Martin Schottenloher, Michael problem and algebras of holomorphic functions, Arch. Math. (Basel) 37 (1981), no. 3, 241–247. MR 637767, DOI 10.1007/BF01234351
- Z. Sebestyén, Every $C^{\ast }$-seminorm is automatically submultiplicative, Period. Math. Hungar. 10 (1979), no. 1, 1–8. MR 506161, DOI 10.1007/BF02018366
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 435-438
- MSC: Primary 46H05; Secondary 46J05
- DOI: https://doi.org/10.1090/S0002-9939-1993-1128724-8
- MathSciNet review: 1128724