Discretization of second-order variational systems
HTML articles powered by AMS MathViewer
- by Michal Fečkan
- Proc. Amer. Math. Soc. 117 (1993), 575-581
- DOI: https://doi.org/10.1090/S0002-9939-1993-1132410-8
- PDF | Request permission
Abstract:
The existence of periodic orbits of the discretization of second-order variational systems is studied both for varying step of discretization and for a fixed small one.References
- S. B. Angenent, The periodic orbits of an area preserving twist map, Comm. Math. Phys. 115 (1988), no. 3, 353–374. MR 931667, DOI 10.1007/BF01218016
- Vieri Benci, A new approach to the Morse-Conley theory, Proceedings of the international conference on recent advances in Hamiltonian systems (L’Aquila, 1986) World Sci. Publishing, Singapore, 1987, pp. 1–52. MR 902622
- Melvin S. Berger, Nonlinearity and functional analysis, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Lectures on nonlinear problems in mathematical analysis. MR 0488101
- Shui-Nee Chow and Reiner Lauterbach, A bifurcation theorem for critical points of variational problems, Nonlinear Anal. 12 (1988), no. 1, 51–61. MR 924752, DOI 10.1016/0362-546X(88)90012-0
- Michal Fec̆kan, Discretization in the method of averaging, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1105–1113. MR 1068119, DOI 10.1090/S0002-9939-1991-1068119-7
- John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1990. Revised and corrected reprint of the 1983 original. MR 1139515
- Shu Jie Li and J. Q. Liu, Morse theory and asymptotic linear Hamiltonian system, J. Differential Equations 78 (1989), no. 1, 53–73. MR 986153, DOI 10.1016/0022-0396(89)90075-2
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 575-581
- MSC: Primary 58F22; Secondary 34C25, 58F20
- DOI: https://doi.org/10.1090/S0002-9939-1993-1132410-8
- MathSciNet review: 1132410