A Volterra type derivative of the Lebesgue integral
HTML articles powered by AMS MathViewer
- by Washek F. Pfeffer
- Proc. Amer. Math. Soc. 117 (1993), 411-416
- DOI: https://doi.org/10.1090/S0002-9939-1993-1135079-1
- PDF | Request permission
Abstract:
Using functions of bounded variation, we define a Volterra type derivative of the linear functional associated with a Lebesgue integrable function and show that it is equal to this function almost everywhere.References
- E. P. Hamilton and M. Z. Nashed, Global and local variational derivatives and integral representations of Gâteaux differentials, J. Functional Analysis 49 (1982), no. 1, 128–144. MR 680859, DOI 10.1016/0022-1236(82)90088-X
- Enrico Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. MR 775682, DOI 10.1007/978-1-4684-9486-0
- Jaroslav Kurzweil, Jean Mawhin, and Washek F. Pfeffer, An integral defined by approximating BV partitions of unity, Czechoslovak Math. J. 41(116) (1991), no. 4, 695–712. MR 1134958
- Washek F. Pfeffer, On the continuity of the Volterra variational derivative, J. Funct. Anal. 71 (1987), no. 1, 195–197. MR 879708, DOI 10.1016/0022-1236(87)90023-1
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 411-416
- MSC: Primary 28A15; Secondary 46G12
- DOI: https://doi.org/10.1090/S0002-9939-1993-1135079-1
- MathSciNet review: 1135079