Short chains and short cycles of modules
HTML articles powered by AMS MathViewer
- by I. Reiten, A. Skowroński and S. O. Smalø
- Proc. Amer. Math. Soc. 117 (1993), 343-354
- DOI: https://doi.org/10.1090/S0002-9939-1993-1136238-4
- PDF | Request permission
Abstract:
We show that for a large class of artin algebras including the algebras of finite representation type, an indecomposable module $M$ is not the middle of a short chain if and only if there is no short cycle $M \to N \to M$ of nonzero nonisomorphisms between indecomposable modules. We apply this to get sufficient conditions for modules to be determined by their composition factors. We also show that if for an algebra of finite representation type there is a sincere indecomposable $\Lambda$-module that is not the middle of a short chain, then $\Lambda$ is a tilted algebra.References
- Maurice Auslander and Idun Reiten, Modules determined by their composition factors, Illinois J. Math. 29 (1985), no. 2, 280–301. MR 784524
- Øyvind Bakke, Some characterizations of tilted algebras, Math. Scand. 63 (1988), no. 1, 43–50. MR 994969, DOI 10.7146/math.scand.a-12224
- Ø. Bakke and S. O. Smalø, Modules with the same socles and tops as a directing module are isomorphic, Comm. Algebra 15 (1987), no. 1-2, 1–9. MR 876969, DOI 10.1080/00927878708823409
- R. Bautista and S. O. Smalø, Nonexistent cycles, Comm. Algebra 11 (1983), no. 16, 1755–1767. MR 703234, DOI 10.1080/00927878308822931
- Klaus Bongartz, On a result of Bautista and Smaløon cycles, Comm. Algebra 11 (1983), no. 18, 2123–2124. MR 710213, DOI 10.1080/00927878308822953
- Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589, DOI 10.1007/BFb0072870
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 343-354
- MSC: Primary 16G10; Secondary 16G70
- DOI: https://doi.org/10.1090/S0002-9939-1993-1136238-4
- MathSciNet review: 1136238