Weighted Sobolev inequalities on domains satisfying the chain condition
HTML articles powered by AMS MathViewer
- by Seng-Kee Chua
- Proc. Amer. Math. Soc. 117 (1993), 449-457
- DOI: https://doi.org/10.1090/S0002-9939-1993-1140667-2
- PDF | Request permission
Abstract:
By similar methods of Iwaniec and Nolder (Hardy-Littlewood inequality for quasiregular mappings in certain domains in ${\mathbb {R}^n}$, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985)), we obtain weighted Sobolev inequalities on domains satisfying the Boman chain condition.References
- B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987, Lecture Notes in Math., vol. 1351, Springer, Berlin, 1988, pp. 52–68. MR 982072, DOI 10.1007/BFb0081242 Sagun Chanillo and Richard L. Wheeden, Poincaré inequalities for a class of non-${A_p}$ weights, Indiana Math. J. (to appear).
- Seng-Kee Chua, Extension theorems on weighted Sobolev spaces, Indiana Univ. Math. J. 41 (1992), no. 4, 1027–1076. MR 1206339, DOI 10.1512/iumj.1992.41.41053 —, Extension theorems on weighted Sobolev spaces. II (to appear). —, Extension and restriction theorems on weighted Sobolev spaces, Ph.D. thesis, Rutgers University, 1991.
- Filippo Chiarenza and Michele Frasca, A note on a weighted Sobolev inequality, Proc. Amer. Math. Soc. 93 (1985), no. 4, 703–704. MR 776206, DOI 10.1090/S0002-9939-1985-0776206-0
- W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc. (3) 54 (1987), no. 1, 141–175. MR 872254, DOI 10.1112/plms/s3-54.1.141
- Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116. MR 643158, DOI 10.1080/03605308208820218
- Ritva Hurri, Poincaré domains in $\textbf {R}^n$, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 71 (1988), 42. MR 978019
- Ritva Hurri, The weighted Poincaré inequalities, Math. Scand. 67 (1990), no. 1, 145–160. MR 1081294, DOI 10.7146/math.scand.a-12325
- T. Iwaniec and C. A. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in $\textbf {R}^n$, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 267–282. MR 802488, DOI 10.5186/aasfm.1985.1030
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Peter W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), no. 1-2, 71–88. MR 631089, DOI 10.1007/BF02392869
- O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), no. 2, 383–401. MR 565886, DOI 10.5186/aasfm.1978-79.0413 Eric Sawyer and Richard L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. (to appear).
- Wayne Smith and David A. Stegenga, Hölder domains and Poincaré domains, Trans. Amer. Math. Soc. 319 (1990), no. 1, 67–100. MR 978378, DOI 10.1090/S0002-9947-1990-0978378-8
- Susan G. Staples, $L^p$-averaging domains and the Poincaré inequality, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 1, 103–127. MR 997974, DOI 10.5186/aasfm.1989.1429
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Jan-Olov Strömberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, Berlin, 1989. MR 1011673, DOI 10.1007/BFb0091154
- Alberto Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986. MR 869816
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 449-457
- MSC: Primary 46E35; Secondary 26D10
- DOI: https://doi.org/10.1090/S0002-9939-1993-1140667-2
- MathSciNet review: 1140667