DENSE PURE SUBGROUPS OF LOCALLY COMPACT GROUPS

M. I. KABENYUK

(Communicated by Ron Solomon)

Abstract. We prove that a locally compact abelian (LCA) group has no proper dense pure subgroups if and only if it does not have proper dense subgroups. This solves a problem of Armacost.

The following problem was posed by Dietrich in [2]: does every nondiscrete LCA group have a dense proper subgroup? Rajagopalan and Subrahmanian [7] gave a negative answer to this question. Later, Khan [5] and the author [4] proved that an LCA group \(G \) has no proper dense subgroups if and only if \(t(G) \) and \(pG \) are open in \(G \) for each prime \(p \), where \(t(G) \) is the maximal torsion subgroup in \(G \) and \(pG = \{px \mid x \in G\} \). Among numerous questions in the book of Armacost [1] we mention the following two:

(i) Is it true that an LCA group \(G \) is discrete whenever every pure subgroup of \(G \) is closed? (Question 7.24).
(ii) What are the LCA groups without proper dense pure subgroups? (Question 7.18).

We recall that a subgroup \(H \) of an abelian group \(G \) is said to be pure in \(G \) if \(nH = nG \cap H \) for all integers \(n \). Takahashi [8] gave a positive answer to the first question and a partial answer to the second. He proved that a nondiscrete LCA group \(G \) contains \(2^c \) proper dense pure subgroups whenever \(G \) is compact or \(t(G) \) is not open in \(G \). We shall prove that the following holds.

Theorem. For a nondiscrete LCA group \(G \), the following conditions are equivalent:

(i) the subgroups \(t(G) \) and \(pG \) are open for all prime \(p \);
(ii) \(G \) has no proper dense subgroups;
(iii) \(G \) has no proper dense pure subgroups.

We begin with three lemmas.

Lemma 1. Let \(G \) be an LCA group, \(p \) a prime. If the subgroup \(pG \) is not open in \(G \), then for each \(a \in G \setminus pG \) there exists a dense subgroup \(G' \) of index \(p \) in \(G \) such that \(a \notin G' \).

Received by the editors February 8, 1991.
1991 Mathematics Subject Classification. Primary 22D05, 22B05.
Key words and phrases. Locally compact abelian groups, pure subgroups, nonclosed subgroups, dense subgroups, dense direct summands.
Proof. If there is a subgroup F in G with $pG \subset F$ and $a \in \overline{F \setminus F}$, then any maximal subgroup among those containing F and avoiding a is the required subgroup G'. (Here and in what follows, \overline{X} is the closure of a subset X in G.) To construct F we first choose a nonclosed subgroup H in G containing pG with $a \notin H$. If $a \in \overline{H}$ then $F = H$. Otherwise, $F = \text{gr}(a+b, H)$ where $b \in H \setminus H$. Indeed, since $H \subset F$, it follows that $b \in F$, and hence $a \in F$. On the other hand, if $a \in F$ then $a = k(a+b)+h$, where k is an integer, $h \in H$; i.e., $(1-k)a = kb + h \in \overline{H}$. Since $pG \subset H$ and $a \notin H$, we have $1-k \equiv 0 \pmod{p}$, therefore, $kb + h \equiv b + h \equiv 0 \pmod{pG}$, i.e., $b \in H$—a contradiction. Thus $a \in \overline{F \setminus F}$ and this completes the proof.

Lemma 2. If G' is a dense subgroup of prime index in an LCA group G and $t(G) \subset G'$, then there exists a subgroup G'' of G such that

(i) $G'' \subset G'$;

(ii) G'' is dense in G;

(iii) $G = G'' \oplus A$, where A is a finite cyclic group.

Proof. Let p be the index of G' in G, and a an element of the smallest order among those elements of $t(G)$ not belonging to G', p' being the order of a, $r \geq 1$. Let $b = pa$, $A = \text{gr}(a)$, $B = \text{gr}(b)$. We shall show that B is a pure subgroup of G'. It suffices to check the equality $p'^{-1}G' \cap B = 0$ [3, Proposition 27.1]. Suppose the contrary, $p'^{-1}x = nb$, $n = p^s m$, $0 \leq s < r - 1$, m is not divided by p, $x \in G'$. Then $r - s - 2 \geq 0$, the element $a' = p^{r-s-2}x - ma$ does not belong to G', and

$$p^{s+1}a' = p'^{-1}x - nb = 0.$$

Since $s + 1 < r$, the order of a' is less than that of a, contradicting the choice of a.

Since B is pure in G', $G' = G'' \oplus B$ for a subgroup G'' of G'. From this we deduce that $G = G'' \oplus A$. If G'' is not dense in G, then $G'' = G'' \oplus A'$, where A' is a proper subgroup of A. Hence, $A' \subset B$, whence $G'' \subset G'$. Since G'' is a closed subgroup of finite index in G, it follows that G'' is open, and hence G' is clopen. This contradicts the condition. Thus G'' is dense in G and the proof is complete.

The following lemma is contained in [6, Lemmas 4 and 5]. We provide a slightly different proof.

Lemma 3. If the subgroup $t(G)$ of torsion elements in an LCA group G is not open, then G has a dense subgroup M such that G/M is isomorphic to the additive group \mathbb{Q} of rationals.

Proof. First we note that any compact nontorsion group H has a free abelian subgroup of infinite (continuum) rank. This is true if the connected component H of the identity is not trivial. If H is totally disconnected then H contains infinite closed monothetic subgroups for which this fact follows from [1, 5.5(e)].

Let F be a free abelian group of infinite index that is contained in an open compact subgroup H of G. Let D be a subgroup of F with $F/D \simeq \mathbb{Q}$ (\simeq means isomorphism). Then

$$G/D = F/D \oplus M/D$$
for a subgroup M of G. It follows from (1) that $G/M \cong \mathbb{Q}$. Let $L = H \cap M$. It then follows from (1) that

$$H = F + L \quad \text{and} \quad H/L \cong F/F \cap L = F/D \cong \mathbb{Q}.$$

Hence, L is dense in H, i.e., $H \subset \overline{M}$. Since $F \subset H$, it follows that $F \subset \overline{M}$. Now it follows from (1) that $\overline{M} = G$. The proof is complete.

We proceed to the proof of the theorem. The only implication of this theorem that we have to prove is (iii) \Rightarrow (i). By Lemma 3 $t(G)$ is open in G, and by Lemmas 1 and 2 the subgroup pG is open for each prime p.

References

Department of Algebra and Geometry, Kemerovo State University, 650043 Kemerovo, Russia

E-mail address: kabenyuk@kemucnit.kemerovo.su