Examples of Buchsbaum quasi-Gorenstein rings
HTML articles powered by AMS MathViewer
- by Manfred Herrmann and Ngô Viet Trung PDF
- Proc. Amer. Math. Soc. 117 (1993), 619-625 Request permission
Abstract:
The paper shows the existence of Buchsbaum quasi-Gorenstein rings of any admissible depth.References
- Henrik Bresinsky, Peter Schenzel, and Wolfgang Vogel, On liaison, arithmetical Buchsbaum curves and monomial curves in $\textbf {P}^{3}$, J. Algebra 86 (1984), no. 2, 283–301. MR 732252, DOI 10.1016/0021-8693(84)90034-6
- Shiro Goto and Keiichi Watanabe, On graded rings. II. ($\textbf {Z}^{n}$-graded rings), Tokyo J. Math. 1 (1978), no. 2, 237–261. MR 519194, DOI 10.3836/tjm/1270216496 J. Herzog and E. Kunz, Die Wertehalbgruppe eines lokalen Rings der Dimension $1$, Ber. Heidelberger Akad. Wiss., vol. II, 1971.
- M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 304376, DOI 10.2307/1970791
- Craig Huneke and Bernd Ulrich, Divisor class groups and deformations, Amer. J. Math. 107 (1985), no. 6, 1265–1303 (1986). MR 815763, DOI 10.2307/2374407
- C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, DOI 10.1007/BF01425554
- Uwe Schäfer and Peter Schenzel, Dualizing complexes of affine semigroup rings, Trans. Amer. Math. Soc. 322 (1990), no. 2, 561–582. MR 1076179, DOI 10.1090/S0002-9947-1990-1076179-6
- Peter Schenzel, On Buchsbaum rings and their canonical modules, Seminar D. Eisenbud/B. Singh/W. Vogel, Vol. 1, Teubner-Texte zur Mathematik, vol. 29, Teubner, Leipzig, 1980, pp. 65–77. MR 610064
- Peter Schenzel, A note on almost complete intersections, Seminar D. Eisenbud/B. Singh/W. Vogel, Vol. 2, Teubner-Texte zur Mathematik, vol. 48, Teubner, Leipzig, 1982, pp. 49–54. MR 686457
- Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. MR 485835, DOI 10.1016/0001-8708(78)90045-2
- Ngô Việt Trung and Lê Tuấn Hoa, Affine semigroups and Cohen-Macaulay rings generated by monomials, Trans. Amer. Math. Soc. 298 (1986), no. 1, 145–167. MR 857437, DOI 10.1090/S0002-9947-1986-0857437-3
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 619-625
- MSC: Primary 13H10; Secondary 13H15
- DOI: https://doi.org/10.1090/S0002-9939-1993-1112491-8
- MathSciNet review: 1112491