$6$-torsion and hyperbolic volume
HTML articles powered by AMS MathViewer
- by F. W. Gehring and G. J. Martin PDF
- Proc. Amer. Math. Soc. 117 (1993), 727-735 Request permission
Abstract:
The Kleinian group $\operatorname {PGL} (2, {O_3})$ is shown to have minimal covolume $( \approx 0.0846 \ldots )$ among all Kleinian groups containing torsion of order $6$ (the associated hyperbolic orbifold is also the minimal volume cusped orbifold). This follows from: Any cocompact Kleinian group with torsion of order $6$ has covolume at least $\tfrac {1} {9}$. As a consequence, any compact hyperbolic manifold with a symmetry of order $6$ (with fixed points) has volume at least $\tfrac {4} {3}$. These results follow from new collaring theorems for torsion in a Kleinian group arising from our generalizations of the Shimizu-Leutbecher inequality.References
- Colin C. Adams, The noncompact hyperbolic $3$-manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987), no. 4, 601–606. MR 894423, DOI 10.1090/S0002-9939-1987-0894423-8
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- F. W. Gehring and G. J. Martin, Stability and extremality in Jørgensen’s inequality, Complex Variables Theory Appl. 12 (1989), no. 1-4, 277–282. MR 1040927, DOI 10.1080/17476938908814372
- F. W. Gehring and G. J. Martin, Inequalities for Möbius transformations and discrete groups, J. Reine Angew. Math. 418 (1991), 31–76. MR 1111201 —, Discreteness in Kleinian groups and iteration theory (to appear). —, Commutators, collars and the geometry of Möbius groups (to appear). —, Volume and torsion in hyperbolic $3$-folds (to appear).
- Troels Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976), no. 3, 739–749. MR 427627, DOI 10.2307/2373814 S. Kojima and Y. Miyamoto, The smallest hyperbolic $3$-manifold with totally geodesic boundary (to appear).
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- Bernard Maskit, Some special $2$-generator Kleinian groups, Proc. Amer. Math. Soc. 106 (1989), no. 1, 175–186. MR 937850, DOI 10.1090/S0002-9939-1989-0937850-4
- Robert Meyerhoff, A lower bound for the volume of hyperbolic $3$-manifolds, Canad. J. Math. 39 (1987), no. 5, 1038–1056. MR 918586, DOI 10.4153/CJM-1987-053-6
- Robert Meyerhoff, The cusped hyperbolic $3$-orbifold of minimum volume, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 154–156. MR 799800, DOI 10.1090/S0273-0979-1985-15401-1
- Robert Meyerhoff, Sphere-packing and volume in hyperbolic $3$-space, Comment. Math. Helv. 61 (1986), no. 2, 271–278. MR 856090, DOI 10.1007/BF02621915 W. P. Thurston, The geometry and topology of $3$-manifolds, Princeton Univ. Lecture notes, 1980.
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 727-735
- MSC: Primary 30F40; Secondary 20H10, 57S30
- DOI: https://doi.org/10.1090/S0002-9939-1993-1116260-4
- MathSciNet review: 1116260