A characterization of hyperbolic manifolds
HTML articles powered by AMS MathViewer
- by Marco Abate
- Proc. Amer. Math. Soc. 117 (1993), 789-793
- DOI: https://doi.org/10.1090/S0002-9939-1993-1128723-6
- PDF | Request permission
Abstract:
In this note we prove that a complex manifold $X$ is Kobayashi hyperbolic if and only if the space $\operatorname {Hol} (\Delta ,X)$ of holomorphic maps of the unit disk $\Delta$ into $X$ is relatively compact (with respect to the compact-open topology) in the space $C(\Delta ,{X^{\ast }})$ of continuous maps from $\Delta$ into the one-point compactification ${X^{\ast }}$ of $X$.References
- Marco Abate, Iteration theory of holomorphic maps on taut manifolds, Research and Lecture Notes in Mathematics. Complex Analysis and Geometry, Mediterranean Press, Rende, 1989. MR 1098711
- Theodore J. Barth, Taut and tight complex manifolds, Proc. Amer. Math. Soc. 24 (1970), 429–431. MR 252679, DOI 10.1090/S0002-9939-1970-0252679-6
- Theodore J. Barth, The Kobayashi distance induces the standard topology, Proc. Amer. Math. Soc. 35 (1972), 439–441. MR 306545, DOI 10.1090/S0002-9939-1972-0306545-X
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Peter Kiernan, On the relations between taut, tight and hyperbolic manifolds, Bull. Amer. Math. Soc. 76 (1970), 49–51. MR 252678, DOI 10.1090/S0002-9904-1970-12363-1
- Shoshichi Kobayashi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan 19 (1967), 460–480. MR 232411, DOI 10.2969/jmsj/01940460
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Shoshichi Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), no. 3, 357–416. MR 414940, DOI 10.1090/S0002-9904-1976-14018-9
- Serge Lang, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987. MR 886677, DOI 10.1007/978-1-4757-1945-1
- Jean-Pierre Rosay, Un exemple d’ouvert borné de $\textbf {C}^{3}$ “taut” mais non hyperbolique complet, Pacific J. Math. 98 (1982), no. 1, 153–156 (French). MR 644946
- H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193–233. MR 224869, DOI 10.1007/BF02392083
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 789-793
- MSC: Primary 32H20
- DOI: https://doi.org/10.1090/S0002-9939-1993-1128723-6
- MathSciNet review: 1128723