POSITIVE HARMONIC MAJORIZATION OF THE REAL PART OF A HOLOMORPHIC FUNCTION

STEPHEN J. GARDINER

(Communicated by Clifford J. Earle, Jr.)

Abstract. Let U be the unit disc. This paper investigates which domains D in the complex plane have the property that $\Re f$ belongs to h^1, or the more restrictive property that e^f belongs to the Smirnov class \mathcal{N}^+, for every holomorphic function $f: U \to D$.

1. Introduction

For each domain (i.e., connected open set) D in \mathbb{C}, let $\mathcal{H}(U, D)$ be the class of all holomorphic functions from the open unit disc U into D. As usual, let \mathcal{N} be the Nevanlinna class of all holomorphic functions f on U for which

$$\sup_{0<r<1} \int_0^{2\pi} \log^+ |f(re^{i\theta})| \, d\theta < \infty.$$

Each function f in \mathcal{N} has a nontangential limit, denoted by $f(e^{i\theta})$, at almost every boundary point $e^{i\theta}$. The Smirnov class \mathcal{N}^+ is the subclass of functions f in \mathcal{N} for which

$$\int_0^{2\pi} \log^+ |f(re^{i\theta})| \, d\theta \to \int_0^{2\pi} \log^+ |f(e^{i\theta})| \, d\theta \quad (r \to 1-).$$

A discussion of the classes \mathcal{N} and \mathcal{N}^+ can be found in Garnett [5, Chapter II].

Theorem A below is classical; see Helms [6, Theorem 8.33] for the "if" assertion and Frostman [4, §52] or Nevanlinna [8, VII, §4.2] for the converse. Theorem B was established more recently by Ahern and Cohn [1]. For an introduction to the notion of thin sets the reader is referred to [6, Chapter 10].

Theorem A. Let D be a domain in \mathbb{C}. Then $f \in \mathcal{N}$ for every f in $\mathcal{H}(U, D)$ if and only if ∂D has positive logarithmic capacity.

Theorem B. Let D be a domain in \mathbb{C}. Then $f \in \mathcal{N}^+$ for every f in $\mathcal{H}(U, D)$ if and only if $\mathbb{C} \setminus D$ is nonthin at ∞.

In this paper we investigate which domains D have the property that $e^f \in \mathcal{N}$, or that $e^f \in \mathcal{N}^+$, for every f in $\mathcal{H}(U, D)$. We note that $e^f \in \mathcal{N}$ if

Received by the editors June 30, 1991; presented to the Society, March 21, 1992 in Springfield, Missouri.

1991 Mathematics Subject Classification. Primary 30D50; Secondary 31A15.
and only if the real part of \(f \) can be written as the difference of two positive harmonic functions on \(U \), i.e., \(\Re f \in h^1 \). Further (assuming that \(e^f \in \mathcal{N}^+ \)), \(e^f \in \mathcal{N}^+ \) if and only if \(\Re f \) is majorized in \(U \) by the Poisson integral of its nontangential boundary values.

We will denote the right half-plane by \(D_0 \). It is obviously the case that if \(D \subseteq D_0 \) then \(\Re f \in h^1 \) for every \(f \) in \(\mathcal{H}(U, D) \). The following result describes the situation for simply connected domains that contain \(D_0 \).

Theorem 1. Let \(D \) be a simply connected domain that contains \(D_0 \). Then \(\Re f \in h^1 \) for every \(f \) in \(\mathcal{H}(U, D) \) if and only if

\[
\int_{-\infty}^{\infty} \frac{\text{dist}(iy, \partial D)}{1 + y^2} \, dy < \infty.
\]

As will be seen in §2, Theorem 1 follows easily from a known result on the angular derivative problem. Now suppose that \(D \) is a simply connected domain that contains \(D_0 \) and satisfies (1). If \(D_1 \) is a domain (not necessarily simply connected) contained in \(D \), then clearly \(\Re f \in h^1 \) (or, equivalently, \(e^f \in \mathcal{N}^+ \)) for every \(f \) in \(\mathcal{H}(U, D_1) \). The following result identifies which of these domains have the stronger property that \(e^f \in \mathcal{N}^+ \) for every \(f \in \mathcal{H}(U, D_1) \).

Theorem 2. Let \(D \) be a simply connected domain that contains \(D_0 \) and satisfies (1), and let \(D_1 \) be a domain contained in \(D \). Then \(e^f \in \mathcal{N}^+ \) for every \(f \) in \(\mathcal{H}(U, D_1) \) if and only if \(\mathbb{R}^4 \setminus D_1^* \) is nonthin at \(\infty \), where

\[
D_1^* = \{(x_1, \ldots, x_4) \in \mathbb{R}^4 : (x_1^2 + x_2^2 + x_3^2)^{1/2} + ix_4 \in D_1\}.
\]

Here \(\infty \) denotes the Alexandroff point for \(\mathbb{R}^4 \). The condition "\(\mathbb{R}^4 \setminus D_1^* \) is nonthin at \(\infty \)" is equivalent to "\(D_0 \setminus D_1 \) is not minimally thin at \(\infty \) with respect to \(D_0 \)", but the proof of Theorem 2 (see §3) does not use any results concerning minimally thin sets.

Let \(PI[g] \) denote the Poisson integral in \(U \) of a function \(g \) in \(L^1(\partial U) \). The following is a simple consequence of Theorem 2.

Corollary. Let \(D_1 \) be a domain contained in \(D_0 \). Then \(u = PI[u|_{\partial U}] \) for every \(f = u + iv \) in \(\mathcal{H}(U, D_1) \) if and only if \(\mathbb{R}^4 \setminus D_1^* \) is nonthin at \(\infty \).

2. Proof of Theorem 1

2.1. The following result is due to Oikawa [9], who formulated it in terms of an infinite strip rather than a half-plane. A closely related result had previously been given by Rodin and Warschawski [10, Theorem 2].

Theorem C. Let \(D \) be a simply connected domain that contains \(D_0 \). Then (1) holds if and only if there is a one-to-one conformal map \(g \) of \(D \) onto \(D_0 \) such that \(g(z)/z \) has a finite nonzero limit as \(|z| \to \infty \) in \(\{re^{i\theta} : |\theta| < \theta_0 \} \) for each \(\theta_0 \) in \((0, \pi/2) \).

The "if" part of Theorem 1 follows easily. To see this, let \(D \) be as in the statement of Theorem 1 and suppose (1) holds. Then there is a function \(g \) as in Theorem C. Let \(z = x + iy \), and put \(l = \lim_{x \to \infty} g(x)/x \). Clearly \(l \) is real, so \(l \in (0, \infty) \). Thus \(\Re g \) is a positive harmonic function on \(D \) whose Poisson integral representation in \(D_0 \) includes the term \(lx \). Hence \(\Re g \) majorizes \(lx \) on \(D_0 \). It follows that if \(f \in \mathcal{H}(U, D) \) the function \(l^{-1} \Re g \circ f \) is a positive harmonic majorant of \(\Re f \), and this implies that \(\Re f \in h^1 \).
2.2. Conversely, suppose that \(D \) is a simply connected domain that contains \(D_0 \) and that \(\Re f \in h^1 \) for every \(f \) in \(\mathcal{H}(U, D) \). It is certainly not the case that \(\Re f \in h^1 \) for every holomorphic function on \(U \) (see below), so \(D \neq C \). Thus we can choose \(f \) to be a one-to-one conformal mapping of \(U \) onto \(D \). Let \(f = u + iv \). By hypothesis, \(u \) has a positive harmonic majorant, \(h \) say, on \(U \). Since \(h \circ f^{-1}(z) \geq u \circ f^{-1}(z) = x \), the positive harmonic function \(H = h \circ f^{-1} \) majorizes \(x \) on \(D \). We define \(\phi: \mathbb{R} \to [0, \infty) \) by \(\phi(y) = \text{dist}(iy, \partial D) \). If \(\phi(y) > 0 \) then \(D \) contains the open disc of centre \(iy \) and radius \(\phi(y) \). Thus, applying Harnack’s inequalities, we obtain
\[
H(iy) \geq C \phi(y)/2 + iy \geq C\phi(y)/2,
\]
where \(C \) is a positive constant. Since
\[
\int_{\{\phi(y) > 0\}} H(iy)/(1 + y^2) \, dy < \infty,
\]
it is now clear that (1) holds.

3. Proof of Theorem 2

3.1. We recall some definitions. A positive harmonic function is called quasi-bounded if it can be expressed as the limit of an increasing sequence of bounded positive harmonic functions. Let \(W \) be an open subset of \(\mathbb{R}^n \) \((n \geq 2)\), let \(s \) be a positive superharmonic function on \(W \), and let \(A \subseteq W \). Then the reduced function (or réduite) of \(s \) relative to \(A \) in \(W \) is defined to be the infimum of all positive superharmonic functions \(S \) on \(W \) that satisfy \(S \geq s \) on \(A \). A subset \(A \) of \(\mathbb{R}^n \) \((n \geq 3)\) is said to be thin at \(\infty \) if the reduced function of (the constant function) \(1 \) relative to \(A \) in \(\mathbb{R}^n \) is less than \(1 \) at some point of \(\mathbb{R}^n \).

The following lemma is an immediate consequence of Huber [7, Lemma].

Lemma A. Let \(A \subseteq D_0 \). The following are equivalent:

(i) the reduced function of \(z \to x \) relative to \(A \) in \(D_0 \) equals \(x \);

(ii) the set \(A^* = \{ (x_1, \ldots, x_n) : (x_1^2 + x_2^2 + x_3^2)^{1/2} + ix_4 \in A \} \) is nonthin at \(\infty \).

3.2. Now let \(D \) be as in the statement of Theorem 2. It follows (see §2.1) that the subharmonic function \(x^+ \) has a harmonic majorant in \(D \). Let \(h \) denote the least harmonic majorant of \(x^+ \) in \(D \). Suppose that \(\mathbb{R}^4 \setminus D_1^* \) (and hence also \((D_0 \setminus D_1)^* \)) is nonthin at \(\infty \). It follows from Lemma A that if \(s \) is any positive superharmonic function on \(D \) that majorizes \(h \) on \(D \setminus D_1 \) so that \(s(z) \geq x \) on \(D_0 \setminus D_1 \), then \(s(z) \geq x \) on \(D_0 \). Hence \(s \) is a superharmonic majorant of \(x^+ \) on \(D \), and so \(s \geq h \) on \(D \). Thus the reduced function of \(h \) relative to the set \(D \setminus D_1 \) in \(D \) equals \(h \) itself, and so (see Doob [3, 1.VIII.10])

\[
h(z) = \int_{D \cap \partial D_1} h(w) \, d\mu_{z, D_1}(w) = \lim_{m \to \infty} h_m(z) \quad (z \in D_1)
\]

where

\[
h_m(z) = \int_{D \cap \partial D_1} \min\{h(w), m\} \, d\mu_{z, D_1}(w) \quad (z \in D_1)
\]

and \(d\mu_{z, D_1} \) denotes harmonic measure for \(D_1 \) and \(z \). Since \(h \) is a positive harmonic function on \(D_1 \) that majorizes \(x \) there, it follows that if \(f \in \mathcal{H}(U, D_1) \) then \(h \circ f \) is a positive harmonic function on \(U \) that majorizes the real part of \(f \). Further, if we define \(u_m = h_m \circ f + \Re f - h \circ f \), then each harmonic function \(u_m \) is bounded above and so is majorized on \(U \) by the Poisson integral of its (nontangential) boundary values. It follows, on letting
\(m \to \infty \), that \(\Re f \) is majorized in \(U \) by the Poisson integral of its boundary values. Thus \(e^f \in \mathcal{N}^+ \) for every \(f \) in \(\mathcal{H}(U, D_1) \).

3.3. To prove the converse, let \(f = u + iv \), where \(f : U \to D_1 \) is the covering map (see Ahlfors [2, Chapter 10]). If \(D_1 \) is bounded, the result is trivial. If \(D_1 \) is unbounded then

\[
\int_0^{2\pi} \frac{1 - |w|^2}{|e^{i\theta} - w|^2} \, g(f(e^{i\theta})) \, d\theta = \int_{\partial D_1} g \, d\mu_{f(w), D_1} \quad (w \in U)
\]

for any continuous function \(g \) on \(D_1 \cup \{\infty\} \). If we put \(g(z) = \min\{x^+, m/|z|\} \) in (2) and let \(m \) tend to infinity, it follows that

\[
u^+(w) \leq \int_0^{2\pi} \frac{1 - |w|^2}{|e^{i\theta} - w|^2} \, u^+(e^{i\theta}) \, d\theta = \int_{\partial D_1} x^+ \, d\mu_{f(w), D_1}(z) \quad (w \in U)
\]

in view of the hypothesis that \(e^f \in \mathcal{N}^+ \). Since \(f(U) = D_1 \), we have

\[(\Re w)^+ \leq \int_{\partial D_1} x^+ \, d\mu_{w, D_1}(z) \quad (w \in D_1).\]

It follows that \(x^+ \) has a quasi-bounded harmonic majorant on \(D_1 \) and hence on \(D_1 \cap D_0 \). Thus \(x \) is a quasi-bounded harmonic function on \(D_1 \cap D_0 \), and so

\[\Re w = \int_{D_0 \cap \partial D_1} x \, d\mu_{w, D_1 \cap D_0}(z) \quad (w \in D_1 \cap D_0).\]

Hence the reduced function of \(x \) relative to \(D_0 \setminus D_1 \) in \(D_0 \) equals \(x \) itself. It follows from Lemma A that \(\mathbb{R}^4 \setminus D_1^+ \) is nonthin at \(\infty \), and this completes the proof of Theorem 2.

References