SPACES WHOSE nTH POWER IS WEAKLY INFINITE-DIMENSIONAL BUT WHOSE \((n+1)\)TH POWER IS NOT

ELŻBIETA POL

(Communicated by James E. West)

ABSTRACT. For every natural number n we construct a metrizable separable space Y such that Y^n is weakly infinite-dimensional (moreover, is a C-space) but Y^{n+1} is strongly infinite-dimensional.

1. Introduction

All our spaces are metrizable separable. Our terminology follows [3]. The symbol P denotes the space of irrational numbers and N the space of natural numbers. A space X is weakly infinite-dimensional (w.i.d.) if for every sequence $(A_1, B_1), (A_2, B_2), \ldots$ of pairs of disjoint closed subsets of X there exist closed sets L_1, L_2, \ldots such that L_i is a partition between A_i and B_i and $\bigcap_{i=1}^{\infty} L_i = \emptyset$. A space is strongly infinite-dimensional (s.i.d.) if it is not w.i.d.

A space X is called a C-space (or has property C) if for every sequence $\mathcal{G}_1, \mathcal{G}_2, \ldots$ of open covers of X there exists a sequence $\mathcal{Z}_1, \mathcal{Z}_2, \ldots$ of families of pairwise disjoint open subsets of X, the union of which covers X, such that each member of \mathcal{Z}_i is contained in a member of \mathcal{G}_i (see, for example, [3, §8] or [18] for this notion). Every countable-dimensional space has property C, and every space with property C is weakly infinite-dimensional.

In [14] an example was given showing that the square of a w.i.d. space may be s.i.d., and in [12] we have constructed a C-space whose product with a 0-dimensional space is s.i.d. (under the Continuum Hypothesis, the 0-dimensional factor may be the space of irrationals P).

In this note we show that for every n the assumption that the nth power Y^n of Y is a C-space may not prevent Y^{n+1} from being s.i.d. In fact, we show that each complete C-space which behaves regularly with respect to finite products, but is not hereditarily w.i.d., is a source of such examples.

Theorem 1. Let X be a completely metrizable space such that

(i) for each C-space E, the product $X \times E$ is a C-space,
(ii) X contains a strongly infinite-dimensional subspace.

Received by the editors July 5, 1991.

1991 Mathematics Subject Classification. Primary 54F45, 54B10.

Key words and phrases. Weakly infinite-dimensional, products, property C.
Then for each \(n \in \mathbb{N} \) there exists \(Y \subset P \times X \), \(P \) being the irrationals, such that

(a) \(Y^n \) is a C-space (hence is weakly infinite-dimensional),

(b) \(Y^{n+1} \) is strongly infinite-dimensional.

Theorem 2. Under the assumptions of Theorem 1 there exists \(Y \subset P \times X \) such that \(Y^n \) is a C-space for every \(n \in \mathbb{N} \) but the product of \(Y \) with a certain subspace of irrationals is strongly infinite-dimensional.

Note that the weakly infinite-dimensional compactum which is not countable-dimensional, constructed by R. Pol in [13], satisfies conditions (i) and (ii) (see [18, §3, first Corollary] for the proof of property (i)).

Garity, Hattori, Rohm, and Yamada (see [4, 5, 6, 18, 19]) have shown that in the presence of \(\sigma \)-compactness the products of spaces with property \(C \) behave in a regular way. Our examples, based on totally imperfect sets, lack compactness-like properties. Let us point out, however, that, as demonstrated in [15], under the Continuum Hypothesis even the Menger Property, a covering property close to \(\sigma \)-compactness, does not exclude the irregularities exhibited in Theorem 1.

The construction given in this paper improves our earlier construction [12, Example 1] by replacing the classical Bernstein’s sets with their modifications considered by van Douwen [2] and Przymusiński [16]. We decided to include, for the reader’s convenience, a simple construction of such sets in a form suitable for our purposes. As indicated by R. Pol (see [16, Remark 3]), this can be achieved by arguments due to Mycielski [11] and Kuratowski [8], concerning independent perfect sets.

Some basic ideas of the construction we apply go back to Michael [9, 10] (and were subsequently developed by Alster and Zenor [1], van Douwen [2], and Przymusiński [17]).

2. Auxiliary lemmas

The lemma below is a particular case of results of Kuratowski [8] and Mycielski [11] and the proof we give is an adaptation of their arguments to our special situation.

Lemma 1. Let \(\mathcal{F} \) be a countable family of continuous maps \(f : S \to T \) from a completely metrizable space \(S \) to a Hausdorff space \(T \). If \(S \) contains a subset \(A \) without isolated points such that each \(f \in \mathcal{F} \) is injective on \(A \), then \(S \) contains a perfect set with this property.

Proof. Let \(Z = \text{cl} \, A \) and let \(\mathcal{H}(Z) \) be the space of all compact subsets of \(Z \) with the Hausdorff metric. Let \(\mathcal{G} = \{ K \in \mathcal{H}(Z) : \text{all } f \in \mathcal{F} \text{ are injective on } K \} \). The set \(\mathcal{G} \) is a \(G_\delta \)-set in \(\mathcal{H}(Z) \) and, since the finite subsets of \(A \) form a subset of \(\mathcal{F} \) dense in \(\mathcal{H}(Z) \), \(\mathcal{G} \) is residual. Now, since the family of perfect subsets of \(Z \) is residual in \(\mathcal{H}(Z) \) (cf. [8, Proposition 2]), \(\mathcal{G} \) contains a perfect set.

The following result was essentially proved in [2, 16].

Lemma 2. Let \(\mathcal{F} \) be a countable family of continuous maps \(f : S \to T \) from a completely metrizable space \(S \) to a Hausdorff space \(T \). Then there exists a
countable collection \mathcal{D} of subsets of S such that

(a) the sets $\bigcup\{f(D) : f \in \mathcal{F}\}$, for $D \in \mathcal{D}$, are pairwise disjoint,
(b) if $D \subset U$ with $D \in \mathcal{D}$ and U open in S, then for some countable $E \subset T$ we have $S\setminus U \subset \bigcup\{f^{-1}(E) : f \in \mathcal{F}\}$.

Proof. We repeat the classical Bernstein's argument. Let $\{F_\alpha : \alpha < 2^\omega\}$ be the collection of all perfect sets in S on which every $f \in \mathcal{F}$ is injective (if this collection is empty, then put $\mathcal{D} = \{\emptyset, \emptyset, \ldots\}$). Let us choose inductively (with respect to pairs (i, α)) points $x_i^\alpha \in F_\alpha$ with $f(x_i^\alpha) \neq g(x_i^\beta)$, if $(i, \alpha) \neq (j, \beta)$, where $i, j \in \mathbb{N}, \alpha, \beta < 2^\omega, f, g \in \mathcal{F}$, and let us set $D_i = \{x_i^\alpha : \alpha < 2^\omega\}, \mathcal{D} = \{D_i : i = 1, 2, \ldots\}$. Suppose that $D_i \subset U$, where U is open in S, and let M be a maximal subset of $S\setminus U$ such that each $f \in \mathcal{F}$ is injective on M. By Lemma 1, the set M is dispersed, hence countable, and (b) follows with $E = \bigcup\{f(M) : f \in \mathcal{F}\}$.

The next lemma is due to Rubin [20]. It is not, however, stated explicitly in [20] and, instead of referring the reader to some details of Rubin's proof, we decided to indicate a standard argument needed to derive the fact we need from a theorem formulated in [20].

Lemma 3. Every strongly infinite-dimensional space X contains a strongly infinite-dimensional totally disconnected subspace.

Proof. Indeed, as proved by Rubin [20, Theorem 3.1], every s.i.d. space X contains an s.i.d. subspace Y all of whose subspaces are either 0-dimensional or strongly infinite-dimensional. On the other hand, each space Y of dimension ≥ 2 contains a totally disconnected subspace of positive dimension. This can be justified as follows: let A and B be disjoint closed subsets of Y such that each partition in Y between A and B has positive dimension and let $f : Y \to [0, 1]$ be a continuous mapping with $f^{-1}(0) = A$ and $f^{-1}(1) = B$. By Hilgers' argument (see [7, Chapter II, §27, IX, Theorem 1]) there exists $M \subset Y$ with $f(M)$ irrationals (in fact, $M \cap f^{-1}(t)$ is a singleton for each irrational t) such that each G_δ-set containing M contains also some $f^{-1}(t)$, where $t \in (0, 1)$. Then M is totally disconnected, but by the enlargement theorem (see [7, Chapter II, §27, IV, Theorem 1]) M is not 0-dimensional as $\dim f^{-1}(t) \geq 1$ for each $t \in (0, 1)$.

3. Proofs

Proof of Theorem 1 (see [3] for facts about weakly infinite-dimensional spaces). Suppose that X is a space satisfying conditions (i) and (ii) of Theorem 1. Set $Z = P \times X$ and let $p : Z \to P$ be the projection. For $j \leq m$ let $p_j : Z^m \to P$ be the composition of the jth projection with p. Put $S = \bigoplus_{m=1}^\infty Z^m$ and let $f_j : S \to P$ be such that $f_j(x)$ is $p_j(x)$ if $x \in Z^m$ with $m \geq j$ or $p_1(x)$ otherwise.

Let D_1, D_2, \ldots be the sets satisfying conditions (a) and (b) of Lemma 2 for S, $T = P$, and $\mathcal{F} = \{f_1, f_2, \ldots\}$. Then for every $i \in \mathbb{N}$ the sets $B_i = \bigcup_{j=1}^\infty f_j(D_i)$ are disjoint totally imperfect subsets of P such that if $A_i = \bigcup_{i=1}^\infty B_i$
$B_i \times X \subset Z$, then

if $m \in \mathbb{N}$ and $U \subset Z^m$ is open and contains A_i^m then

$Z^m \setminus U$ is contained in countably many fibers $p_j^{-1}(d)$,

where $d \in P$ and $j \leq m$.

This follows directly from conditions (a) and (b) of Lemma 2.

Since the space X is not hereditarily w.i.d., by Lemma 3 there exists an s.i.d. subset M of X which is totally disconnected. Let $h : M \to P$ be an injection (see [7, Chapter V, §46, V, Theorem 3]); then the set

$$\tilde{M} = \{(h(x), x) : x \in M\} \subset Z$$

is homeomorphic to M.

Let us fix $n \in \mathbb{N}$. For every $i \leq n + 1$ let $C_i = \bigcup \{A_j : j \neq i, j \leq n + 1\}$ and let $Y_i = C_i \cup \tilde{M}$ be the subspace of Z.

We will show that the space $Y = \bigoplus_{i=1}^{n+1} Y_i$ satisfies conditions (a) and (b) of Theorem 1.

To prove (a) it suffices to show that for every $k \leq n$ and every $i_1, \ldots, i_k \in \{1, \ldots, n + 1\}$

$$\text{(2)} \quad \text{the Cartesian product } Y_{i_1} \times \cdots \times Y_{i_k} \text{ has property } C.$$

Suppose that $m = 1$ or (2) is true for $k < m$, where $m \leq n$. Put $K = Y_{i_1} \times \cdots \times Y_{i_m}$. To prove that K is a C-space it suffices to show that

$$\text{if } G_1, G_2, \ldots \text{ is a sequence of open covers of } K \text{ then there exists a pairwise disjoint open refinement } \mathcal{G}_n \text{ of } G_n \text{ such that}$$

$$\text{(3)} \quad \bigcup \{G_n : n \in \mathbb{N}\} \text{ covers } K.$$

Since $m \leq n$, there exists $\alpha \in \{1, \ldots, n + 1\} \setminus \{i_1, \ldots, i_m\}$. We have $A_j \subset C_i$ for $l = 1, \ldots, m$, thus $A_i^m \subset K$. Since A_i^m is the Cartesian product of X^m with a subset B_j of P^m and since X satisfies (i), the space A_i^m is a C-space. Thus, for every $p = 1, 2, \ldots$ there exists a family \mathcal{W}_{2p-1} consisting of disjoint open subsets of Z^m such that $\mathcal{W}_{2p-1} = \{W \cap K : W \in \mathcal{W}_{2p-1}\}$ is a refinement of \mathcal{G}_{2p-1} and the set $U = \bigcup_{p=1}^{\infty} \mathcal{W}_{2p-1}$ contains A_i^m. By (1), the set $Z^m \setminus U$ is contained in countably many fibers of the form $H = \{x \in Z^m : p_k(x) = \alpha\}$, where $k \leq m$ and $d \in D \subset P$, with $|D| \leq \aleph_0$. If $m > 1$ then for every such H the set $H \cap K$ is closed in K and is homeomorphic with $\mathbb{P}_{l \neq k} Y_{i_l} \times X$, or with $\mathbb{P}_{i \neq k} Y_{i_1} \times \{d, h^{-1}(\alpha)\}$, if $d \in h(M) \setminus (\bigcup \{B_j : j \neq i_k, j \leq n + 1\})$, or it is empty. By the inductive assumption and (i) the set $H \cap K$ is a C-space. If $m = 1$, then $H \cap K$ is homeomorphic to X, one-point, or the empty space, hence it is a C-space. In both cases the set $K \setminus U$ is contained in countably many closed subsets of K of the form $H \cap K$ with property C, hence it has property C. Thus for every $p = 1, 2, \ldots$ there exists a pairwise disjoint open refinement \mathcal{W}_p of \mathcal{G}_p such that $\bigcup_{p=1}^{\infty} \mathcal{W}_p$ covers $K \setminus U = K \setminus \bigcup_{p=1}^{\infty} \mathcal{W}_{2p-1}$. The families $\mathcal{G}_1, \mathcal{G}_2, \ldots$ satisfy the required conditions, which finishes the proof of (3).

We will show now that Y^{n+1} is strongly infinite-dimensional. It suffices to prove that $Y_1 \times Y_2 \times \cdots Y_{n+1}$ is s.i.d. Let

$$\Delta = \{x = (x_1, \ldots, x_{n+1}) \in Y_1 \times \cdots \times Y_{n+1} : x_1 = \cdots = x_{n+1}\}.$$
Let \(x = (z, z, \ldots, z) \in \Delta \). If \(z \notin \widetilde{M} \), then \(z \in A_j \) for some \(j \leq n + 1 \) and at the same time \(z \in Y_j \setminus M \subset C_j \), contrary to \(C_j \cap A_j = \emptyset \). Thus \(z \in \widetilde{M} \), which implies that \(\Delta \) is homeomorphic with \(\widetilde{M} \). Thus \(Y_1 \times \cdots \times Y_{n+1} \) is s.i.d., since it contains a closed subspace which is s.i.d.

Proof of Theorem 2. Let \(B_1, B_2, \ldots \) be the sets constructed in the proof of Theorem 1. Then the sets \(B'_1 = B_1 \) and \(B'_2 = P \setminus B'_1 \) form a decomposition of \(P \) into two disjoint Bernstein sets such that condition (1) is satisfied for \(A_i = B'_i \times X \), \(i = 1, 2 \). Let \(M, h : M \to P \), and \(\widetilde{M} \) be as in the proof of Theorem 1 and let

\[
\widetilde{M}_i = \{(h(x), x) : x \in h^{-1}(B'_i)\}
\]

for \(i = 1, 2 \). Since \(\widetilde{M} = \widetilde{M}_1 \cup \widetilde{M}_2 \) is s.i.d., then either \(\widetilde{M}_1 \) or \(\widetilde{M}_2 \) is s.i.d. Suppose that \(\widetilde{M}_1 \) is s.i.d. and let \(Y = M_1 \cup A_2 \).

We will show that

\[
(4) \quad \text{the product } Y \times B'_1 \text{ of } Y \text{ with a subspace } B'_1 \text{ of } P \text{ is s.i.d.}
\]

Similarly as in [12, Example 1], let \(f : Y \to P \) be the projection; then \(f^{-1}(B'_1) = \widetilde{M}_1 \) and \(\text{Graph}(f|\widetilde{M}_1) \) is homeomorphic to \(\widetilde{M}_1 \), so it is s.i.d. This implies that \(Y \times B'_1 \) is s.i.d. (see [12, Lemma 2]).

It remains to check that

\[
(5) \quad Y^n \text{ is a } C\text{-space for every } n \in N.
\]

This can be proved inductively, similarly to condition (2), using the facts that \(Y^n \supset A_2^n \) for every \(n \in N \) and \(A_2 \) satisfies (1).

References

15. ——, Note on products of weakly infinite-dimensional spaces with Menger Property, preprint.

Department of Mathematics, Warsaw University, ul. Banacha 2, 00-913 Warszawa 59, Poland
E-mail address: POL@MIMUW.EDU.PL