Standard models for some commuting multioperators
HTML articles powered by AMS MathViewer
- by V. Müller and F.-H. Vasilescu
- Proc. Amer. Math. Soc. 117 (1993), 979-989
- DOI: https://doi.org/10.1090/S0002-9939-1993-1112498-0
- PDF | Request permission
Abstract:
An analogue to the Sz.-Nagy-Foiaş dilation theory is presented for several commuting operators on a Hilbert space.References
- Jim Agler, Hypercontractions and subnormality, J. Operator Theory 13 (1985), no. 2, 203–217. MR 775993
- Jonathan Arazy, Stephen D. Fisher, Svante Janson, and Jaak Peetre, Membership of Hankel operators on the ball in unitary ideals, J. London Math. Soc. (2) 43 (1991), no. 3, 485–508. MR 1113389, DOI 10.1112/jlms/s2-43.3.485
- Ameer Athavale, Holomorphic kernels and commuting operators, Trans. Amer. Math. Soc. 304 (1987), no. 1, 101–110. MR 906808, DOI 10.1090/S0002-9947-1987-0906808-6
- Ameer Athavale, On the intertwining of joint isometries, J. Operator Theory 23 (1990), no. 2, 339–350. MR 1066811 —, Model theory on the unit ball in ${{\mathbf {C}}^n}$, J. Operator Theory (to appear). M. Cho and W. Żelazko, On geometric spectral radius of commuting $n$-tuples of operators, Hokkaido Math. J. (to appear)
- S. W. Drury, A generalization of von Neumann’s inequality to the complex ball, Proc. Amer. Math. Soc. 68 (1978), no. 3, 300–304. MR 480362, DOI 10.1090/S0002-9939-1978-0480362-8
- Vladimír Müller, Models for operators using weighted shifts, J. Operator Theory 20 (1988), no. 1, 3–20. MR 972177
- Béla Sz.-Nagy and Ciprian Foiaş, Analyse harmonique des opérateurs de l’espace de Hilbert, Masson et Cie, Paris; Akadémiai Kiadó, Budapest, 1967 (French). MR 0225183
- Florian-Horia Vasilescu, An operator-valued Poisson kernel, J. Funct. Anal. 110 (1992), no. 1, 47–72. MR 1190419, DOI 10.1016/0022-1236(92)90042-H
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 979-989
- MSC: Primary 47A45
- DOI: https://doi.org/10.1090/S0002-9939-1993-1112498-0
- MathSciNet review: 1112498