Subadditive functions and a relaxation of the homogeneity condition of seminorms
HTML articles powered by AMS MathViewer
- by Janusz Matkowski
- Proc. Amer. Math. Soc. 117 (1993), 991-1001
- DOI: https://doi.org/10.1090/S0002-9939-1993-1113646-9
- PDF | Request permission
Abstract:
We prove that every locally bounded above at a point subadditive function $f:(0,\infty ) \to \mathbb {R}$ such that $f(rt) \leqslant rf(t),\;t > 0$, for some $r \in (0,1)$ has to be linear. Using this we show among others that the homogeneity condition of a seminorm ${\mathbf {p}}$ in a real linear space $X$ can be essentially relaxed to the following condition: there exists an $r \in (0,1)$ such that ${\mathbf {p}}(rx) \leqslant r{\mathbf {p}}(x)$ for all $x \in X$. A new characterization of the ${{\mathbf {L}}^p}$-norm and one-line proofs of Minkowski’s and Höder’s inequalities are also given.References
- Edgar Berz, Sublinear functions on $R$, Aequationes Math. 12 (1975), no. 2-3, 200–206. MR 387862, DOI 10.1007/BF01836548
- Andrew Bruckner, Minimal superadditive extensions of superadditive functions, Pacific J. Math. 10 (1960), 1155–1162. MR 122943
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Marek Kuczma, An introduction to the theory of functional equations and inequalities, Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], vol. 489, Uniwersytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1985. Cauchy’s equation and Jensen’s inequality; With a Polish summary. MR 788497
- Janusz Matkowski, On a characterization of $L^p$-norm, Ann. Polon. Math. 50 (1989), no. 2, 137–144. MR 1044861, DOI 10.4064/ap-50-2-137-144
- J. Matkowski, A functional inequality characterizing convex functions, conjugacy and a generalization of Hölder’s and Minkowski’s inequalities, Aequationes Math. 40 (1990), no. 2-3, 168–180. MR 1069792, DOI 10.1007/BF02112293
- Janusz Matkowski and Tadeusz Świątkowski, Quasi-monotonicity, subadditive bijections of $\textbf {R}_+,$ and characterization of $L^p$-norm, J. Math. Anal. Appl. 154 (1991), no. 2, 493–506. MR 1088646, DOI 10.1016/0022-247X(91)90053-3
- Janusz Matkowski, The converse of the Minkowski’s inequality theorem and its generalization, Proc. Amer. Math. Soc. 109 (1990), no. 3, 663–675. MR 1009994, DOI 10.1090/S0002-9939-1990-1009994-0 —, A generalization of Mulholland inequality (submitted).
- H. P. Mulholland, On generalizations of Minkowski’s inequality in the form of a triangle inequality, Proc. London Math. Soc. (2) 51 (1950), 294–307. MR 33865, DOI 10.1112/plms/s2-51.4.294
- R. A. Rosenbaum, Sub-additive functions, Duke Math. J. 17 (1950), 227–247. MR 36796
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 991-1001
- MSC: Primary 26A12; Secondary 39B72, 46B99
- DOI: https://doi.org/10.1090/S0002-9939-1993-1113646-9
- MathSciNet review: 1113646