Stability and linear independence associated with wavelet decompositions
HTML articles powered by AMS MathViewer
- by Rong Qing Jia and Jianzhong Wang
- Proc. Amer. Math. Soc. 117 (1993), 1115-1124
- DOI: https://doi.org/10.1090/S0002-9939-1993-1120507-8
- PDF | Request permission
Abstract:
Wavelet decompositions are based on basis functions satisfying refinement equations. The stability, linear independence, and orthogonality of the integer translates of basis functions play an essential role in the study of wavelets. In this paper we characterize these properties in terms of the mask sequence in the refinement equation that the basis function satisfies.References
- Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453, vi+186. MR 1079033, DOI 10.1090/memo/0453 C. K. Chui and J. Z. Wang, A general framework of compactly supported splines and wavelets, CAT Report 219, Texas A&M Univ., 1990.
- A. Cohen, Ondelettes, analyses multirésolutions et filtres miroirs en quadrature, Ann. Inst. H. Poincaré C Anal. Non Linéaire 7 (1990), no. 5, 439–459 (French, with English summary). MR 1138532, DOI 10.1016/S0294-1449(16)30286-4 —, Ondelettes, analyses multirésolutions et traitement numerique du signal, Ph.D. Thesis, Université de Paris IX (Dauphine), France, 1990.
- Wolfgang Dahmen and Charles A. Micchelli, Translates of multivariate splines, Linear Algebra Appl. 52/53 (1983), 217–234. MR 709352, DOI 10.1016/0024-3795(83)80015-9
- Wolfgang Dahmen and Charles A. Micchelli, On stationary subdivision and the construction of compactly supported orthonormal wavelets, Multivariate approximation and interpolation (Duisburg, 1989) Internat. Ser. Numer. Math., vol. 94, Birkhäuser, Basel, 1990, pp. 69–90. MR 1111928, DOI 10.1007/978-3-0348-5685-0_{5}
- Ingrid Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996. MR 951745, DOI 10.1002/cpa.3160410705
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Rong Qing Jia and Charles A. Micchelli, On linear independence for integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 1, 69–85. MR 1200188, DOI 10.1017/S0013091500005903 —, Using the refinement equation for the construction of pre-wavelets II: Powers of two, Curves and Surfaces (P. J. Laurent, A. Le Méhauté, and L. L. Schumaker, eds.), Academic Press, New York, 1991, pp. 209-246.
- William J. LeVeque, Fundamentals of number theory, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1977. MR 0480290
- Stephane G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(\textbf {R})$, Trans. Amer. Math. Soc. 315 (1989), no. 1, 69–87. MR 1008470, DOI 10.1090/S0002-9947-1989-1008470-5
- Y. Meyer, Ondelettes et fonctions splines, Séminaire sur les équations aux dérivées partielles 1986–1987, École Polytech., Palaiseau, 1987, pp. Exp. No. VI, 18 (French). MR 920024
- Charles A. Micchelli, Using the refinement equation for the construction of pre-wavelets, Numer. Algorithms 1 (1991), no. 1, 75–116. MR 1135288, DOI 10.1007/BF02145583
- Amos Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx. 5 (1989), no. 3, 297–308. MR 996932, DOI 10.1007/BF01889611
- Gilbert Strang, Wavelets and dilation equations: a brief introduction, SIAM Rev. 31 (1989), no. 4, 614–627. MR 1025484, DOI 10.1137/1031128
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 1115-1124
- MSC: Primary 42C15
- DOI: https://doi.org/10.1090/S0002-9939-1993-1120507-8
- MathSciNet review: 1120507