A front-tracking alternative to the random choice method
HTML articles powered by AMS MathViewer
- by Nils Henrik Risebro
- Proc. Amer. Math. Soc. 117 (1993), 1125-1139
- DOI: https://doi.org/10.1090/S0002-9939-1993-1120511-X
- PDF | Request permission
Abstract:
An alternative to Glimm’s proof of the existence of solutions to systems of hyperbolic conservation laws is presented. The proof is based on an idea by Dafermos for the single conservation law and in some respects simplifies Glimm’s original argument. The proof is based on construction of approximate solutions of which a subsequence converges. It is shown that the constructed solution satisfies Lax’s entropy inequalities. The construction also gives a numerical method for solving such systems.References
- P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537–566. MR 93653, DOI 10.1002/cpa.3160100406
- James Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 697–715. MR 194770, DOI 10.1002/cpa.3160180408
- Tai Ping Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys. 57 (1977), no. 2, 135–148. MR 470508
- Alexandre Joel Chorin, Random choice solution of hyperbolic systems, J. Comput. Phys. 22 (1976), no. 4, 517–533. MR 471342, DOI 10.1016/0021-9991(76)90047-4
- Peter Lax, Shock waves and entropy, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Publ. Math. Res. Center Univ. Wisconsin, No. 27, Academic Press, New York, 1971, pp. 603–634. MR 0393870 J. H. Bick and G. F. Newell, A continuum model for two-directional traffic flow, Quart. J. Appl. Math. 18 (1961), 191-204.
- A. J. Chorin and J. E. Marsden, A mathematical introduction to fluid mechanics, Springer-Verlag, New York-Heidelberg, 1979. MR 551053 D. W. Peaceman, Fundamentals of numerical reservoir simulation, Elsevier, Amsterdam, 1977.
- Constantine M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl. 38 (1972), 33–41. MR 303068, DOI 10.1016/0022-247X(72)90114-X
- Randall J. LeVeque, Large time step shock-capturing techniques for scalar conservation laws, SIAM J. Numer. Anal. 19 (1982), no. 6, 1091–1109. MR 679654, DOI 10.1137/0719080
- H. Holden, L. Holden, and R. Høegh-Krohn, A numerical method for first order nonlinear scalar conservation laws in one dimension, Comput. Math. Appl. 15 (1988), no. 6-8, 595–602. Hyperbolic partial differential equations. V. MR 953567, DOI 10.1016/0898-1221(88)90282-9 R. Høegh-Krohn and N. H. Risebro, The Riemann problem for a single conservation law in two space dimensions, Oslo Univ. Preprint series, 1988.
- Blair K. Swartz and Burton Wendroff, AZTEC: a front tracking code based on Godunov’s method, Appl. Numer. Math. 2 (1986), no. 3-5, 385–397. MR 863995, DOI 10.1016/0168-9274(86)90041-3
- Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146
- Tai Ping Liu, Large-time behavior of solutions of initial and initial-boundary value problems of a general system of hyperbolic conservation laws, Comm. Math. Phys. 55 (1977), no. 2, 163–177. MR 447825
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 1125-1139
- MSC: Primary 35L65; Secondary 76L05, 76M99
- DOI: https://doi.org/10.1090/S0002-9939-1993-1120511-X
- MathSciNet review: 1120511