Topological intersection theorems
HTML articles powered by AMS MathViewer
- by Jürgen Kindler
- Proc. Amer. Math. Soc. 117 (1993), 1003-1011
- DOI: https://doi.org/10.1090/S0002-9939-1993-1127141-4
- PDF | Request permission
Abstract:
Let $\{ {C_x}:x \in X\}$ be a family of subsets of some set $Y$. A purely topological condition is given that is both necessary and sufficient for $\bigcap {\{ {C_x}:x \in X\} }$ to be nonvoid. Applications to minimax theorems are sketched.References
- Ky Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1960/61), 305–310. MR 131268, DOI 10.1007/BF01353421
- Ky Fan, A minimax inequality and applications, Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), Academic Press, New York, 1972, pp. 103–113. MR 0341029
- Michael A. Geraghty and Bor-Luh Lin, Topological minimax theorems, Proc. Amer. Math. Soc. 91 (1984), no. 3, 377–380. MR 744633, DOI 10.1090/S0002-9939-1984-0744633-2
- Chung Wei Ha, Minimax and fixed point theorems, Math. Ann. 248 (1980), no. 1, 73–77. MR 569411, DOI 10.1007/BF01349255
- Charles Horvath, Quelques théorèmes en théorie des mini-max, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 5, 269–272 (French, with English summary). MR 1042861
- I. Joó, A simple proof for von Neumann’s minimax theorem, Acta Sci. Math. (Szeged) 42 (1980), no. 1-2, 91–94. MR 576940
- I. Joó, On some convexities, Acta Math. Hungar. 54 (1989), no. 1-2, 163–172. MR 1015786, DOI 10.1007/BF01950717
- J. Kindler and R. Trost, Minimax theorems for interval spaces, Acta Math. Hungar. 54 (1989), no. 1-2, 39–49. MR 1015776, DOI 10.1007/BF01950707
- Erwin Klein and Anthony C. Thompson, Theory of correspondences, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1984. Including applications to mathematical economics; A Wiley-Interscience Publication. MR 752692
- Hidetoshi Komiya, Elementary proof for Sion’s minimax theorem, Kodai Math. J. 11 (1988), no. 1, 5–7. MR 930413, DOI 10.2996/kmj/1138038812 —, On minimax theorems without linear structure, Hiyoshi Review of Natural Science 8 (1990), 74-78.
- V. Komornik, Minimax theorems for upper semicontinuous functions, Acta Math. Acad. Sci. Hungar. 40 (1982), no. 1-2, 159–163. MR 686004, DOI 10.1007/BF01897316 H. König, A general minimax theorem based on connectedness, Arch. Math. (to appear).
- S. Simons, A flexible minimax theorem, Acta Math. Hungar. 63 (1994), no. 2, 119–132. MR 1260284, DOI 10.1007/BF01874944
- Maurice Sion, On general minimax theorems, Pacific J. Math. 8 (1958), 171–176. MR 97026
- L. L. Stachó, Minimax theorems beyond topological vector spaces, Acta Sci. Math. (Szeged) 42 (1980), no. 1-2, 157–164. MR 576949
- Hoàng Tuy, On the general minimax theorem, Colloq. Math. 33 (1975), no. 1, 145–158. MR 425733, DOI 10.4064/cm-33-1-145-158
- Wen-chün Wu, A remark on the fundamental theorem in the theory of games, Sci. Record (N.S.) 3 (1959), 229–233. MR 122587
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 1003-1011
- MSC: Primary 54C60; Secondary 49J35, 54D05
- DOI: https://doi.org/10.1090/S0002-9939-1993-1127141-4
- MathSciNet review: 1127141