On the zeros of the solutions of $y”+P(z)y=0$ where $P(z)$ is a polynomial
HTML articles powered by AMS MathViewer
- by Li-Chien Shen
- Proc. Amer. Math. Soc. 117 (1993), 1057-1061
- DOI: https://doi.org/10.1090/S0002-9939-1993-1132424-8
- PDF | Request permission
Abstract:
Let $\{ {z_n}\}$ be the nonzero zeros of the differential equation $y'' + P(z)y = 0$, where $P(z) = {a_0} + {a_1}z + {a_2}{z^2} + \cdots + {a_N}{z^N}$, and let ${c_k} = \sum \nolimits _{n = 1}^\infty {1/z_n^k\;{\text {for}}\;k \geqslant [N/2] + 2}$. We show that ${c_k}$ is a rational function of ${a_n},\;n = 0,1,2, \ldots ,N$; futhermore, the successive ${c_k}$ can be computed from previous ${c_k}$’s by a simple recurrence relation.References
- S. Ahmed and Martin E. Muldoon, Reciprocal power sums of differences of zeros of special functions, SIAM J. Math. Anal. 14 (1983), no. 2, 372–382. MR 688581, DOI 10.1137/0514028
- Einar Hille, Ordinary differential equations in the complex domain, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. MR 0499382
- Li-Chien Shen, Construction of a differential equation $y''+Ay=0$ with solutions having the prescribed zeros, Proc. Amer. Math. Soc. 95 (1985), no. 4, 544–546. MR 810160, DOI 10.1090/S0002-9939-1985-0810160-8
- Yasutaka Sibuya, Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North-Holland Mathematics Studies, Vol. 18, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0486867
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 1057-1061
- MSC: Primary 34A20; Secondary 30D20
- DOI: https://doi.org/10.1090/S0002-9939-1993-1132424-8
- MathSciNet review: 1132424