NORMAL SPACES WHOSE STONE-ČECH REMAINDERS HAVE COUNTABLE TIGHTNESS

JIN-YUAN ZHOU

(Communicated by Franklin D. Tall)

Abstract. We prove, assuming PFA, that each normal space whose Stone-Čech remainder has countable tightness is ACRIN. A normal space X is called ACRIN if each of its regular images is normal. Fleissner and Levy proved that if X is normal and every countably compact subset of the Stone-Čech remainder $\beta X \setminus X$ is closed in $\beta X \setminus X$, then X is ACRIN. They asked if each normal space whose Stone-Čech remainder has countable tightness is ACRIN. Theorem 2 gives the positive answer assuming the Proper Forcing Axiom.

It is well known that the tightness of $\beta \omega \setminus \omega$ is 2^ω. Since every not countably compact Hausdorff space contains a closed copy of ω, the next lemma is easy to prove.

Lemma 1. If X is a normal space and $\beta X \setminus X$ has countable tightness, then X is countably compact.

Theorem 2 (PFA). If X is a normal space and $\beta X \setminus X$ has countable tightness, then X is ACRIN.

Proof. Let $f: X \to Y$ be a continuous map and Y be regular. We prove that Y is normal. By virtue of Lemma 5 of [FL] there exist Z and bf such that $X \subseteq Z \subseteq \beta X$ and bf is a perfect map from Z onto Y with $bf|_X = f$. Since $\beta X \setminus X$ has countable tightness, it is easy to see that the spaces X, Y, and Z are all countably compact. Since perfect mappings preserve normality, we only need to prove that Z is normal. Let K and L be two disjoint closed subsets of Z. We will prove that $K \cap \beta X \setminus X = \emptyset$. Since X is normal, we have $K \cap X \beta X \cap L \cap X \beta X = \emptyset$. Take open subsets U and V of βX such that $U \beta X \cap V \beta X = \emptyset$, $K \cap X \beta X \subseteq U$, and $L \cap X \beta X \subseteq V$. Let $U' = U \setminus L \beta X$, $V' = V \setminus K \beta X$, and $T = (K \cup L \beta X) \setminus (U' \cup V')$. Obviously T is a closed subset of βX and is contained in $\beta X \setminus X$. Thus T is a compact space of countable tightness. Furthermore, $K \setminus U$ and $L \setminus V$ are contained in T and are closed subsets of the countably compact space Z. We have proved that $K \setminus U$ and $L \setminus V$ are countably compact subsets of a compact space of countable tightness. By virtue of Balogh’s Theorem [Ba, 2.1], $K \setminus U$ and $L \setminus V$ are compact. Thus
we have
\[
\overline{K}^{\beta X} \cap \overline{L}^{\beta X} = (\overline{K \cap U}^{\beta X} \cup (K \setminus U)) \cap (\overline{L \cap V}^{\beta X} \cup (L \setminus V))
\]
\[
= (K \cap U^{\beta X} \cap (L \setminus V)) \cup (L \cap V^{\beta X} \cap (K \setminus U))
\]
\[
\subseteq (K^{\beta X} \cap L) \cup (L^{\beta X} \cap K) = \emptyset.
\]
We are done.

ACKNOWLEDGMENT

We acknowledge the referee’s help in writing this paper.

REFERENCES

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, People’s Republic of China

Current address: Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3

E-mail address: ysma9202@clid.yorku.ca