Dense orbits of rationals
HTML articles powered by AMS MathViewer
- by Michael D. Boshernitzan
- Proc. Amer. Math. Soc. 117 (1993), 1201-1203
- DOI: https://doi.org/10.1090/S0002-9939-1993-1134622-6
- PDF | Request permission
Abstract:
Let $\mathbb {Q}$ denote the rational points of the interval $K = [0,1)$. We construct a one-to-one piecewise linear map $\phi :K \to K$ which has the following properties: (1) for any $x \in K,\phi (x) \in \mathbb {Q}$ if and only if $x \in \mathbb {Q}$; (2) all the orbits $O(x) = \{ {\phi ^i}(x)|i \geqslant 0\} ,\;x \in K$, are dense in $K$; (3) $\phi$ is an automorphism of the unit circle $K = [0,1) = \mathbb {R}/\mathbb {Z}$. This example is motivated by a question of Friedman who was interested, because of an application to logic (Dynamic Recursion Theory), in an example of a piecewise polynomial map $\phi :K \to K$ having an orbit $O(k)$ that is dense in $K$ and lies in $\mathbb {Q}$ (for some $k \in K$).References
- Michael Herman, Sur la conjugason différentiable des diffeomorphisms du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5-253.
Liming Ren, personal communication, May 1991.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 1201-1203
- MSC: Primary 58F08
- DOI: https://doi.org/10.1090/S0002-9939-1993-1134622-6
- MathSciNet review: 1134622