Integrability of superharmonic functions on Hölder domains of the plane
HTML articles powered by AMS MathViewer
- by Makoto Masumoto
- Proc. Amer. Math. Soc. 117 (1993), 1083-1088
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152284-9
- PDF | Request permission
Abstract:
We prove that if $D$ is a finitely connected Hölder domain of the plane, then there exists $p > 0$ for which every positive superharmonic function on $D$ is $p$-integrable over $D$ with respect to two-dimensional Lebesgue measure.References
- D. H. Armitage, Further results on the global integrability of superharmonic functions, J. London Math. Soc. (2) 6 (1972), 109–121. MR 313524, DOI 10.1112/jlms/s2-6.1.109
- Jochen Becker and Christian Pommerenke, Hölder continuity of conformal mappings and nonquasiconformal Jordan curves, Comment. Math. Helv. 57 (1982), no. 2, 221–225. MR 684114, DOI 10.1007/BF02565858
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980). MR 581801, DOI 10.1007/BF02798768
- F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, DOI 10.1007/BF02786713
- L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1969. MR 0261018
- Irwin Kra, Automorphic forms and Kleinian groups, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1972. MR 0357775
- Fumi-Yuki Maeda and Noriaki Suzuki, The integrability of superharmonic functions on Lipschitz domains, Bull. London Math. Soc. 21 (1989), no. 3, 270–278. MR 986371, DOI 10.1112/blms/21.3.270
- Makoto Masumoto, A distortion theorem for conformal mappings with an application to subharmonic functions, Hiroshima Math. J. 20 (1990), no. 2, 341–350. MR 1063368
- Makoto Masumoto, Integrability of superharmonic functions on plane domains, J. London Math. Soc. (2) 45 (1992), no. 1, 62–78. MR 1157552, DOI 10.1112/jlms/s2-45.1.62
- Wayne Smith and David A. Stegenga, Hölder domains and Poincaré domains, Trans. Amer. Math. Soc. 319 (1990), no. 1, 67–100. MR 978378, DOI 10.1090/S0002-9947-1990-0978378-8
- Wayne Smith and David A. Stegenga, Sobolev imbeddings and integrability of harmonic functions on Hölder domains, Potential theory (Nagoya, 1990) de Gruyter, Berlin, 1992, pp. 303–313. MR 1167248
- Wayne Smith and David A. Stegenga, Exponential integrability of the quasi-hyperbolic metric on Hölder domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 2, 345–360. MR 1139802, DOI 10.5186/aasfm.1991.1625
- Noriaki Suzuki, Note on the integrability of superharmonic functions, Proc. Amer. Math. Soc. 118 (1993), no. 2, 415–417. MR 1126201, DOI 10.1090/S0002-9939-1993-1126201-1
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 1083-1088
- MSC: Primary 31A05; Secondary 30C20
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152284-9
- MathSciNet review: 1152284