Representations of $\textrm {Alg} \textrm {Lat}(T)$
HTML articles powered by AMS MathViewer
- by Jörg Eschmeier
- Proc. Amer. Math. Soc. 117 (1993), 1013-1021
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152979-7
- PDF | Request permission
Abstract:
For a hyponormal operator $T$ with the property that the boundary of the essential spectrum is of planar Lebesgue measure zero, it is proved that the operator algebra $\operatorname {AlgLat} (T)$ generated by the invariant subspace lattice of $T$ is commutative. If in addition $T$ is a pure hyponormal operator, then $\operatorname {AlgLat} (T)$ is shown to be contained in the bicommutant of $T$. These are particular cases of more general results obtained for restrictions and quotients of operators decomposable in the sense of Foiaş.References
- E. Albrecht and J. Eschmeier, Functional models and local spectral theory, preprint, Saarbrücken and Münster, 1991.
- L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, Canadian J. Math. 19 (1967), 810–822. MR 213378, DOI 10.4153/CJM-1967-075-4
- Scott W. Brown, Hyponormal operators with thick spectra have invariant subspaces, Ann. of Math. (2) 125 (1987), no. 1, 93–103. MR 873378, DOI 10.2307/1971289
- Bernard Chevreau, George Exner, and Carl Pearcy, On the structure of contraction operators. III, Michigan Math. J. 36 (1989), no. 1, 29–62. MR 989936, DOI 10.1307/mmj/1029003881
- Ion Colojoară and Ciprian Foiaş, Theory of generalized spectral operators, Mathematics and its Applications, Vol. 9, Gordon and Breach Science Publishers, New York-London-Paris, 1968. MR 0394282
- John B. Conway, Subnormal operators, Research Notes in Mathematics, vol. 51, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981. MR 634507
- James A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509–512. MR 278099, DOI 10.1090/S0002-9939-1971-0278099-7
- Jörg Eschmeier and Bebe Prunaru, Invariant subspaces for operators with Bishop’s property $(\beta )$ and thick spectrum, J. Funct. Anal. 94 (1990), no. 1, 196–222. MR 1077551, DOI 10.1016/0022-1236(90)90034-I
- James K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61–69. MR 374985
- Andrew M. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech. 13 (1964), 125–132. MR 0159241
- Harro Heuser, Funktionalanalysis, 2nd ed., Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1986 (German). Theorie und Anwendung. [Theory and application]. MR 1027595, DOI 10.1007/978-3-322-96755-8
- Gottfried Köthe, Topological vector spaces. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 237, Springer-Verlag, New York-Berlin, 1979. MR 551623
- Jürgen Leiterer, Banach coherent analytic Fréchet sheaves, Math. Nachr. 85 (1978), 91–109. MR 517643, DOI 10.1002/mana.19780850108
- Mircea Martin and Mihai Putinar, Lectures on hyponormal operators, Operator Theory: Advances and Applications, vol. 39, Birkhäuser Verlag, Basel, 1989. MR 1028066, DOI 10.1007/978-3-0348-7466-3
- Robert F. Olin and James E. Thomson, Algebras of subnormal operators, J. Functional Analysis 37 (1980), no. 3, 271–301. MR 581424, DOI 10.1016/0022-1236(80)90045-2
- D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511–517. MR 192365
- Joseph L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172–191. MR 0268706, DOI 10.1016/0022-1236(70)90055-8
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 1013-1021
- MSC: Primary 47B20; Secondary 47A11, 47A15, 47B40
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152979-7
- MathSciNet review: 1152979