Kamenev type theorems for second-order matrix differential systems
HTML articles powered by AMS MathViewer
- by Lynn H. Erbe, Qingkai Kong and Shi Gui Ruan
- Proc. Amer. Math. Soc. 117 (1993), 957-962
- DOI: https://doi.org/10.1090/S0002-9939-1993-1154244-0
- PDF | Request permission
Abstract:
We consider the second order matrix differential systems (1) $(P(t)Y’)’ + Q(t)Y = 0$ and (2) $Y'' + Q(t)Y = 0$ where $Y,\;P$ and $Q$ are $n \times n$ real continuous matrix functions with $P(t),\;Q(t)$ symmetric and $P(t)$ positive definite for $t \in [{t_0},\infty )\;(P(t) > 0,t \geqslant {t_0})$. We establish sufficient conditions in order that all prepared solutions $Y(t)$ of (1) and (2) are oscillatory. The results obtained can be regarded as generalizing well-known results of Kamenev in the scalar case.References
- W. Allegretto and L. Erbe, Oscillation criteria for matrix differential inequalities, Canad. Math. Bull. 16 (1973), 5–10. MR 322263, DOI 10.4153/CMB-1973-002-0
- F. V. Atkinson, Hans G. Kaper, and Man Kam Kwong, An oscillation criterion for linear second-order differential systems, Proc. Amer. Math. Soc. 94 (1985), no. 1, 91–96. MR 781063, DOI 10.1090/S0002-9939-1985-0781063-2
- G. J. Butler and L. H. Erbe, Oscillation results for second order differential systems, SIAM J. Math. Anal. 17 (1986), no. 1, 19–29. MR 819208, DOI 10.1137/0517003
- G. J. Butler and L. H. Erbe, Oscillation results for selfadjoint differential systems, J. Math. Anal. Appl. 115 (1986), no. 2, 470–481. MR 836240, DOI 10.1016/0022-247X(86)90009-0
- G. J. Butler, L. H. Erbe, and A. B. Mingarelli, Riccati techniques and variational principles in oscillation theory for linear systems, Trans. Amer. Math. Soc. 303 (1987), no. 1, 263–282. MR 896022, DOI 10.1090/S0002-9947-1987-0896022-5
- Ralph Byers, B. J. Harris, and Man Kam Kwong, Weighted means and oscillation conditions for second order matrix differential equations, J. Differential Equations 61 (1986), no. 2, 164–177. MR 823400, DOI 10.1016/0022-0396(86)90117-8
- Garret J. Etgen and Roger T. Lewis, Positive functionals and oscillation criteria for second order differential systems, Proc. Edinburgh Math. Soc. (2) 22 (1979), no. 3, 277–290. MR 560991, DOI 10.1017/S001309150001645X
- William Benjamin Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc. 19 (1918), no. 4, 341–352. MR 1501107, DOI 10.1090/S0002-9947-1918-1501107-2
- Philip Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, Mass., 1982. MR 658490
- Philip Hartman, Oscillation criteria for selfadjoint second-order differential systems and “principal sectional curvatures”, J. Differential Equations 34 (1979), no. 2, 326–338. MR 550049, DOI 10.1016/0022-0396(79)90013-5
- Don B. Hinton and Roger T. Lewis, Oscillation theory for generalized second-order differential equations, Rocky Mountain J. Math. 10 (1980), no. 4, 751–766. MR 595103, DOI 10.1216/RMJ-1980-10-4-751
- I. V. Kamenev, An integral test for conjugacy for second order linear differential equations, Mat. Zametki 23 (1978), no. 2, 249–251 (Russian). MR 486798
- Man Kam Kwong and Hans G. Kaper, Oscillation of two-dimensional linear second-order differential systems, J. Differential Equations 56 (1985), no. 2, 195–205. MR 774162, DOI 10.1016/0022-0396(85)90104-4
- Man Kam Kwong, Hans G. Kaper, Kazuo Akiyama, and Angelo B. Mingarelli, Oscillation of linear second-order differential systems, Proc. Amer. Math. Soc. 91 (1984), no. 1, 85–91. MR 735570, DOI 10.1090/S0002-9939-1984-0735570-8
- Angelo B. Mingarelli, On a conjecture for oscillation of second-order ordinary differential systems, Proc. Amer. Math. Soc. 82 (1981), no. 4, 593–598. MR 614884, DOI 10.1090/S0002-9939-1981-0614884-3
- Ch. G. Philos, Oscillation theorems for linear differential equations of second order, Arch. Math. (Basel) 53 (1989), no. 5, 482–492. MR 1019162, DOI 10.1007/BF01324723
- E. C. Tomastik, Oscillation of systems of second order differential equations, J. Differential Equations 9 (1971), 436–442. MR 274863, DOI 10.1016/0022-0396(71)90016-7
- Terry Walters, A characterization of positive linear functionals and oscillation criteria for matrix differential equations, Proc. Amer. Math. Soc. 78 (1980), no. 2, 198–202. MR 550493, DOI 10.1090/S0002-9939-1980-0550493-1
- Aurel Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115–117. MR 28499, DOI 10.1090/S0033-569X-1949-28499-6
- Ju Rang Yan, Oscillation theorems for second order linear differential equations with damping, Proc. Amer. Math. Soc. 98 (1986), no. 2, 276–282. MR 854033, DOI 10.1090/S0002-9939-1986-0854033-4
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 957-962
- MSC: Primary 34C10; Secondary 34A30
- DOI: https://doi.org/10.1090/S0002-9939-1993-1154244-0
- MathSciNet review: 1154244