Diffeomorphisms of the torus with wandering domains
HTML articles powered by AMS MathViewer
- by Patrick D. McSwiggen
- Proc. Amer. Math. Soc. 117 (1993), 1175-1186
- DOI: https://doi.org/10.1090/S0002-9939-1993-1154247-6
- PDF | Request permission
Abstract:
Examples of ${C^{3 - \varepsilon }}$ diffeomorphisms of the $2$-torus are constructed, each of which is semiconjugate to an ergodic translation but has a wandering domain with dense orbit. This is a generalization of a classical example on the circle due to Denjoy.References
- V. Akis, A Denjoy diffeomorphism of the torus, preprint.
- P. Bohl, Über die Hinsichtlich der Unabhängigen und Abhängigen Variabeln Periodische Differentialgleichung Erster Ordnung, Acta Math. 40 (1916), no. 1, 321–336 (German). MR 1555141, DOI 10.1007/BF02418549 A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pure Appl. 11 (1932), 333-375.
- Jenny Harrison, Unsmoothable diffeomorphisms, Ann. of Math. (2) 102 (1975), no. 1, 85–94. MR 388458, DOI 10.2307/1970975
- Jenny Harrison, Unsmoothable diffeomorphisms on higher dimensional manifolds, Proc. Amer. Math. Soc. 73 (1979), no. 2, 249–255. MR 516473, DOI 10.1090/S0002-9939-1979-0516473-9
- J. Harrison, Denjoy fractals, Topology 28 (1989), no. 1, 59–80. MR 991099, DOI 10.1016/0040-9383(89)90032-3
- J. Harrison, Embedded continued fractals and their Hausdorff dimension, Constr. Approx. 5 (1989), no. 1, 99–115. Fractal approximation. MR 982727, DOI 10.1007/BF01889601 M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 1-233.
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173 P. McSwiggen, Diffeomorphisms of the $k$-torus with wandering domains, preprint. A. Norton and J. Velling, Denjoy-like theorems for diffeomorphisms of the $2$-torus, preprint.
- Peter Walters, Anosov diffeomorphisms are topologically stable, Topology 9 (1970), 71–78. MR 254862, DOI 10.1016/0040-9383(70)90051-0
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 117 (1993), 1175-1186
- MSC: Primary 58F15; Secondary 58F13
- DOI: https://doi.org/10.1090/S0002-9939-1993-1154247-6
- MathSciNet review: 1154247