The isoperimetric inequality for nonsimple closed curves
HTML articles powered by AMS MathViewer
- by Liliana M. Gysin
- Proc. Amer. Math. Soc. 118 (1993), 197-203
- DOI: https://doi.org/10.1090/S0002-9939-1993-1079698-X
- PDF | Request permission
Abstract:
The main purpose of this paper is the generalization to the hyperbolic and elliptic spaces of the isoperimetric inequality of Banchoff and Pohl (J. Differential Geom. 6 (1971), 175-192).References
- Thomas F. Banchoff and William F. Pohl, A generalization of the isoperimetric inequality, J. Differential Geometry 6 (1971/72), 175–192. MR 305319
- William F. Pohl, Some integral formulas for space curves and their generalization, Amer. J. Math. 90 (1968), 1321–1345. MR 238247, DOI 10.2307/2373302
- Luis A. Santaló, Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac. MR 0433364
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 197-203
- MSC: Primary 53C65; Secondary 53A35
- DOI: https://doi.org/10.1090/S0002-9939-1993-1079698-X
- MathSciNet review: 1079698