Minimal relative relation modules of finite $p$-groups
HTML articles powered by AMS MathViewer
- by Mohammad Yamin
- Proc. Amer. Math. Soc. 118 (1993), 1-3
- DOI: https://doi.org/10.1090/S0002-9939-1993-1086347-3
- PDF | Request permission
Abstract:
Consider $1 \to S \to E \to G \to 1$, where $G$ is a finite $p$-group generated by ${g_i},\;1 \leqslant i \leqslant d$, and $E$ a free product of cyclic groups $\langle {g_i}\rangle ,1 \leqslant i \leqslant d$. If $d$ is the minimum number of generators for $G$, then we prove that the largest elementary abelian $p$-quotient $S/{S’}{S^p}$, regarded as an ${\mathbb {F}_p}G$-module via conjugation in $E$, is nonprojective and indecomposable.References
- Wolfgang Gaschütz, Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden, Math. Z. 60 (1954), 274–286 (German). MR 65564, DOI 10.1007/BF01187377
- Karl W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Mathematics, Vol. 143, Springer-Verlag, Berlin-New York, 1970. MR 0279200, DOI 10.1007/BFb0059162
- Karl W. Gruenberg, Relation modules of finite groups, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 25, American Mathematical Society, Providence, R.I., 1976. MR 0457538, DOI 10.1090/cbms/025
- Alex Heller, Indecomposable representations and the loop-space operation, Proc. Amer. Math. Soc. 12 (1961), 640–643. MR 126480, DOI 10.1090/S0002-9939-1961-0126480-2
- Mohammad Yamin, Relative relation modules of finite groups, Proc. Edinburgh Math. Soc. (2) 34 (1991), no. 3, 433–442. MR 1131962, DOI 10.1017/S0013091500005204
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1-3
- MSC: Primary 20J05; Secondary 20C05
- DOI: https://doi.org/10.1090/S0002-9939-1993-1086347-3
- MathSciNet review: 1086347