Hitting time bounds for Brownian motion on a fractal
HTML articles powered by AMS MathViewer
- by William B. Krebs
- Proc. Amer. Math. Soc. 118 (1993), 223-232
- DOI: https://doi.org/10.1090/S0002-9939-1993-1116263-X
- PDF | Request permission
Abstract:
We calculate a bound on hitting times for Brownian motion defined on any nested fractal. We apply this bound to show that any such process is point recurrent. We then show that any diffusion on a nested fractal must have a transition density with respect to Hausdorff measure on the underlying fractal. We also prove that any Brownian motion on a nested fractal has a jointly continuous local time with a simple modulus of space-time continuity.References
- D. J. Aldous, Meeting times for independent Markov chains, Technical Report No. 118, Dept. of Statistics, University of California, Berkeley, California, 1987.
- Martin T. Barlow and Edwin A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988), no. 4, 543–623. MR 966175, DOI 10.1007/BF00318785
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- R. K. Getoor and H. Kesten, Continuity of local times for Markov processes, Compositio Math. 24 (1972), 277–303. MR 310977 S. Goldstein, Random walks and diffusions defined on fractals, Percolation Theory and the Ergodic Theory of Infinite Particle Systems (H. Kesten, ed.), 1987.
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- William B. Krebs, A diffusion defined on a fractal state space, Stochastic Process. Appl. 37 (1991), no. 2, 199–212. MR 1102870, DOI 10.1016/0304-4149(91)90043-C
- Shigeo Kusuoka, A diffusion process on a fractal, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985) Academic Press, Boston, MA, 1987, pp. 251–274. MR 933827
- Tom Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc. 83 (1990), no. 420, iv+128. MR 988082, DOI 10.1090/memo/0420
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 223-232
- MSC: Primary 60J60
- DOI: https://doi.org/10.1090/S0002-9939-1993-1116263-X
- MathSciNet review: 1116263