The equivariant Serre spectral sequence
Authors:
I. Moerdijk and J.-A. Svensson
Journal:
Proc. Amer. Math. Soc. 118 (1993), 263-278
MSC:
Primary 55T10; Secondary 55N91, 55R91, 55T99
DOI:
https://doi.org/10.1090/S0002-9939-1993-1123662-9
MathSciNet review:
1123662
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: For spaces with a group action, we introduce Bredon cohomology with local (or twisted) coefficients and show that it is invariant under weak equivariant homotopy equivalence. We use this new cohomology to construct a Serre spectral sequence for equivariant fibrations.
- [1] Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 0214062
- [2] Theodor Bröcker, Singuläre Definition der äquivarianten Bredon Homologie, Manuscripta Math. 5 (1971), 91–102 (German, with English summary). MR 0293618, https://doi.org/10.1007/BF01397610
- [3] Albrecht Dold and Dieter Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble 11 (1961), 201–312 (German, with French summary). MR 0150183
- [4] A. D. Elmendorf, Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983), no. 1, 275–284. MR 690052, https://doi.org/10.1090/S0002-9947-1983-0690052-0
- [5] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125
- [6] John W. Gray, Fibred and cofibred categories, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 21–83. MR 0213413
- [7] Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119–221 (French). MR 0102537, https://doi.org/10.2748/tmj/1178244839
- [8] I. Moerdijk and J.-A. Svensson, A Shapiro lemma for diagrams of spaces, with applications to equivariant topology (to appear).
- [9] Daniel Quillen, Higher algebraic 𝐾-theory. I, Algebraic 𝐾-theory, I: Higher 𝐾-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
- [10] Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312. MR 0353298, https://doi.org/10.1016/0040-9383(74)90022-6
- [11] R. M. Seymour, Some functional constructions on 𝐺-spaces, Bull. London Math. Soc. 15 (1983), no. 4, 353–359. MR 703760, https://doi.org/10.1112/blms/15.4.353
- [12] R. W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 91–109. MR 510404, https://doi.org/10.1017/S0305004100055535
- [13] Charles E. Watts, A homology theory for small categories, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 331–335. MR 0204497
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55T10, 55N91, 55R91, 55T99
Retrieve articles in all journals with MSC: 55T10, 55N91, 55R91, 55T99
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1993-1123662-9
Article copyright:
© Copyright 1993
American Mathematical Society


