A quantitative Dirichlet-Jordan test for Walsh-Fourier series
HTML articles powered by AMS MathViewer
- by Ferenc Móricz
- Proc. Amer. Math. Soc. 118 (1993), 143-149
- DOI: https://doi.org/10.1090/S0002-9939-1993-1123663-0
- PDF | Request permission
Abstract:
We consider the Walsh-Fourier series $\sum {{a_k}{w_k}(x)}$ of a function $f$ assumed to be of bounded fluctuation on the interval $[0,1)$. Every function of bounded variation is also of bounded fluctuation on the same interval, but not conversely. We present an estimate for the difference of $f(x)$ at a point $x \in [0,1)$ and the partial sum of its Walsh-Fourier series in terms of the bounded fluctuation operator. This gives rise to a local convergence result. As special cases, we obtain a Walsh analogue of the Dirichlet-Jordan test and a global convergence result due to Onneweer.References
- R. Bojanić, An estimate of the rate of convergence for Fourier series of functions of bounded variation, Publ. Inst. Math. (Beograd) (N.S.) 26(40) (1979), 57–60. MR 572330
- C. W. Onneweer, On uniform convergence for Walsh-Fourier series, Pacific J. Math. 34 (1970), 117–122. MR 275048, DOI 10.2140/pjm.1970.34.117
- C. W. Onneweer and Daniel Waterman, Fourier series of functions of harmonic bounded fluctuation on groups, J. Analyse Math. 27 (1974), 79–83. MR 481938, DOI 10.1007/BF02788643 R. E. A. C. Paley, A remarkable system of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279.
- F. Schipp, W. R. Wade, and P. Simon, Walsh series, Adam Hilger, Ltd., Bristol, 1990. An introduction to dyadic harmonic analysis; With the collaboration of J. Pál. MR 1117682
- J. L. Walsh, A Closed Set of Normal Orthogonal Functions, Amer. J. Math. 45 (1923), no. 1, 5–24. MR 1506485, DOI 10.2307/2387224
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 143-149
- MSC: Primary 42C10; Secondary 41A30
- DOI: https://doi.org/10.1090/S0002-9939-1993-1123663-0
- MathSciNet review: 1123663